This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree). (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mpl | ⊢ mPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑤 ⦌ ( 𝑤 ↾s { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmpl | ⊢ mPoly | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | 1 | cv | ⊢ 𝑖 |
| 5 | cmps | ⊢ mPwSer | |
| 6 | 3 | cv | ⊢ 𝑟 |
| 7 | 4 6 5 | co | ⊢ ( 𝑖 mPwSer 𝑟 ) |
| 8 | vw | ⊢ 𝑤 | |
| 9 | 8 | cv | ⊢ 𝑤 |
| 10 | cress | ⊢ ↾s | |
| 11 | vf | ⊢ 𝑓 | |
| 12 | cbs | ⊢ Base | |
| 13 | 9 12 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 14 | 11 | cv | ⊢ 𝑓 |
| 15 | cfsupp | ⊢ finSupp | |
| 16 | c0g | ⊢ 0g | |
| 17 | 6 16 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 18 | 14 17 15 | wbr | ⊢ 𝑓 finSupp ( 0g ‘ 𝑟 ) |
| 19 | 18 11 13 | crab | ⊢ { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } |
| 20 | 9 19 10 | co | ⊢ ( 𝑤 ↾s { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) |
| 21 | 8 7 20 | csb | ⊢ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑤 ⦌ ( 𝑤 ↾s { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) |
| 22 | 1 3 2 2 21 | cmpo | ⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑤 ⦌ ( 𝑤 ↾s { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) |
| 23 | 0 22 | wceq | ⊢ mPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑤 ⦌ ( 𝑤 ↾s { 𝑓 ∈ ( Base ‘ 𝑤 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) |