This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval.p | |- P = ( I mPoly R ) |
|
| mplval.s | |- S = ( I mPwSer R ) |
||
| mplval.b | |- B = ( Base ` S ) |
||
| mplval.z | |- .0. = ( 0g ` R ) |
||
| mplval.u | |- U = { f e. B | f finSupp .0. } |
||
| Assertion | mplval | |- P = ( S |`s U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval.p | |- P = ( I mPoly R ) |
|
| 2 | mplval.s | |- S = ( I mPwSer R ) |
|
| 3 | mplval.b | |- B = ( Base ` S ) |
|
| 4 | mplval.z | |- .0. = ( 0g ` R ) |
|
| 5 | mplval.u | |- U = { f e. B | f finSupp .0. } |
|
| 6 | ovexd | |- ( ( i = I /\ r = R ) -> ( i mPwSer r ) e. _V ) |
|
| 7 | id | |- ( s = ( i mPwSer r ) -> s = ( i mPwSer r ) ) |
|
| 8 | oveq12 | |- ( ( i = I /\ r = R ) -> ( i mPwSer r ) = ( I mPwSer R ) ) |
|
| 9 | 7 8 | sylan9eqr | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> s = ( I mPwSer R ) ) |
| 10 | 9 2 | eqtr4di | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> s = S ) |
| 11 | 10 | fveq2d | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( Base ` s ) = ( Base ` S ) ) |
| 12 | 11 3 | eqtr4di | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( Base ` s ) = B ) |
| 13 | simplr | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> r = R ) |
|
| 14 | 13 | fveq2d | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( 0g ` r ) = ( 0g ` R ) ) |
| 15 | 14 4 | eqtr4di | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( 0g ` r ) = .0. ) |
| 16 | 15 | breq2d | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( f finSupp ( 0g ` r ) <-> f finSupp .0. ) ) |
| 17 | 12 16 | rabeqbidv | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } = { f e. B | f finSupp .0. } ) |
| 18 | 17 5 | eqtr4di | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } = U ) |
| 19 | 10 18 | oveq12d | |- ( ( ( i = I /\ r = R ) /\ s = ( i mPwSer r ) ) -> ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) = ( S |`s U ) ) |
| 20 | 6 19 | csbied | |- ( ( i = I /\ r = R ) -> [_ ( i mPwSer r ) / s ]_ ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) = ( S |`s U ) ) |
| 21 | df-mpl | |- mPoly = ( i e. _V , r e. _V |-> [_ ( i mPwSer r ) / s ]_ ( s |`s { f e. ( Base ` s ) | f finSupp ( 0g ` r ) } ) ) |
|
| 22 | ovex | |- ( S |`s U ) e. _V |
|
| 23 | 20 21 22 | ovmpoa | |- ( ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( S |`s U ) ) |
| 24 | reldmmpl | |- Rel dom mPoly |
|
| 25 | 24 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = (/) ) |
| 26 | ress0 | |- ( (/) |`s U ) = (/) |
|
| 27 | 25 26 | eqtr4di | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( (/) |`s U ) ) |
| 28 | reldmpsr | |- Rel dom mPwSer |
|
| 29 | 28 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 30 | 2 29 | eqtrid | |- ( -. ( I e. _V /\ R e. _V ) -> S = (/) ) |
| 31 | 30 | oveq1d | |- ( -. ( I e. _V /\ R e. _V ) -> ( S |`s U ) = ( (/) |`s U ) ) |
| 32 | 27 31 | eqtr4d | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = ( S |`s U ) ) |
| 33 | 23 32 | pm2.61i | |- ( I mPoly R ) = ( S |`s U ) |
| 34 | 1 33 | eqtri | |- P = ( S |`s U ) |