This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpfconst.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| mpfconst.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | ||
| mpfconst.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mpfconst.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| mpfconst.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| mpfconst.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| Assertion | mpfconst | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfconst.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | mpfconst.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 3 | mpfconst.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | mpfconst.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 5 | mpfconst.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 6 | mpfconst.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 7 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) | |
| 9 | eqid | ⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) | |
| 10 | eqid | ⊢ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 11 | 7 8 9 1 10 3 4 5 6 | evlssca | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 12 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 13 | 7 8 9 12 1 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 14 | 3 4 5 13 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 16 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) | |
| 17 | 15 16 | rhmf | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 18 | ffn | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) | |
| 19 | 14 17 18 | 3syl | ⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 20 | 9 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
| 21 | 5 20 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
| 22 | eqid | ⊢ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 23 | 8 | mplring | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ Ring ) |
| 24 | 8 | mpllmod | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ∈ LMod ) |
| 25 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) | |
| 26 | 10 22 23 24 25 15 | asclf | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑆 ↾s 𝑅 ) ∈ Ring ) → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) : ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ⟶ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 27 | 3 21 26 | syl2anc | ⊢ ( 𝜑 → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) : ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ⟶ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 28 | 1 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 29 | 9 1 | ressbas2 | ⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
| 30 | 5 28 29 | 3syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) ) |
| 31 | ovexd | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) ∈ V ) | |
| 32 | 8 3 31 | mplsca | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) = ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↾s 𝑅 ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
| 34 | 30 33 | eqtrd | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
| 35 | 6 34 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
| 36 | 27 35 | ffvelcdmd | ⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 37 | fnfvelrn | ⊢ ( ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∧ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) | |
| 38 | 19 36 37 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ‘ 𝑋 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
| 39 | 11 38 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
| 40 | 39 2 | eleqtrrdi | ⊢ ( 𝜑 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ 𝑄 ) |