This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpfconst.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| mpfconst.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | ||
| mpfconst.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mpfconst.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| mpfconst.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| mpfproj.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | ||
| Assertion | mpfproj | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑓 ‘ 𝐽 ) ) ∈ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfconst.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | mpfconst.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 3 | mpfconst.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | mpfconst.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 5 | mpfconst.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 6 | mpfproj.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) | |
| 7 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) | |
| 9 | eqid | ⊢ ( 𝑆 ↾s 𝑅 ) = ( 𝑆 ↾s 𝑅 ) | |
| 10 | 7 8 9 1 3 4 5 6 | evlsvar | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑓 ‘ 𝐽 ) ) ) |
| 11 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) | |
| 12 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 13 | 7 11 9 12 1 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 14 | 3 4 5 13 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) | |
| 16 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) | |
| 17 | 15 16 | rhmf | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ) |
| 18 | ffn | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) : ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) | |
| 19 | 14 17 18 | 3syl | ⊢ ( 𝜑 → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 20 | 9 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
| 21 | 5 20 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝑅 ) ∈ Ring ) |
| 22 | 11 8 15 3 21 6 | mvrcl | ⊢ ( 𝜑 → ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 23 | fnfvelrn | ⊢ ( ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) Fn ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ∧ ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) | |
| 24 | 19 22 23 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ) ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ) |
| 25 | 24 2 | eleqtrrdi | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ‘ ( ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ‘ 𝐽 ) ) ∈ 𝑄 ) |
| 26 | 10 25 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑓 ‘ 𝐽 ) ) ∈ 𝑄 ) |