This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modremain | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( ( 𝑁 mod 𝐷 ) = 𝑅 ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( ( 𝑁 mod 𝐷 ) = 𝑅 ↔ 𝑅 = ( 𝑁 mod 𝐷 ) ) | |
| 2 | divalgmodcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0 ) → ( 𝑅 = ( 𝑁 mod 𝐷 ) ↔ ( 𝑅 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) ) | |
| 3 | 2 | 3adant3r | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝑅 = ( 𝑁 mod 𝐷 ) ↔ ( 𝑅 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) ) |
| 4 | ibar | ⊢ ( 𝑅 < 𝐷 → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ( 𝑅 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ( 𝑅 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ( 𝑅 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑅 ) ) ) ) |
| 7 | nnz | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℤ ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → 𝐷 ∈ ℤ ) |
| 9 | simp1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → 𝑁 ∈ ℤ ) | |
| 10 | nn0z | ⊢ ( 𝑅 ∈ ℕ0 → 𝑅 ∈ ℤ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) → 𝑅 ∈ ℤ ) |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → 𝑅 ∈ ℤ ) |
| 13 | 9 12 | zsubcld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝑁 − 𝑅 ) ∈ ℤ ) |
| 14 | divides | ⊢ ( ( 𝐷 ∈ ℤ ∧ ( 𝑁 − 𝑅 ) ∈ ℤ ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝐷 ) = ( 𝑁 − 𝑅 ) ) ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝐷 ) = ( 𝑁 − 𝑅 ) ) ) |
| 16 | eqcom | ⊢ ( ( 𝑧 · 𝐷 ) = ( 𝑁 − 𝑅 ) ↔ ( 𝑁 − 𝑅 ) = ( 𝑧 · 𝐷 ) ) | |
| 17 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → 𝑁 ∈ ℂ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 20 | nn0cn | ⊢ ( 𝑅 ∈ ℕ0 → 𝑅 ∈ ℂ ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) → 𝑅 ∈ ℂ ) |
| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → 𝑅 ∈ ℂ ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → 𝑅 ∈ ℂ ) |
| 24 | simpr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℤ ) | |
| 25 | 8 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → 𝐷 ∈ ℤ ) |
| 26 | 24 25 | zmulcld | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 𝐷 ) ∈ ℤ ) |
| 27 | 26 | zcnd | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 𝐷 ) ∈ ℂ ) |
| 28 | 19 23 27 | subadd2d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → ( ( 𝑁 − 𝑅 ) = ( 𝑧 · 𝐷 ) ↔ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| 29 | 16 28 | bitrid | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) ∧ 𝑧 ∈ ℤ ) → ( ( 𝑧 · 𝐷 ) = ( 𝑁 − 𝑅 ) ↔ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| 30 | 29 | rexbidva | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝐷 ) = ( 𝑁 − 𝑅 ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| 31 | 15 30 | bitrd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝐷 ∥ ( 𝑁 − 𝑅 ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| 32 | 3 6 31 | 3bitr2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( 𝑅 = ( 𝑁 mod 𝐷 ) ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |
| 33 | 1 32 | bitrid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷 ) ) → ( ( 𝑁 mod 𝐷 ) = 𝑅 ↔ ∃ 𝑧 ∈ ℤ ( ( 𝑧 · 𝐷 ) + 𝑅 ) = 𝑁 ) ) |