This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modremain | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( ( N mod D ) = R <-> E. z e. ZZ ( ( z x. D ) + R ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( ( N mod D ) = R <-> R = ( N mod D ) ) |
|
| 2 | divalgmodcl | |- ( ( N e. ZZ /\ D e. NN /\ R e. NN0 ) -> ( R = ( N mod D ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
|
| 3 | 2 | 3adant3r | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( R = ( N mod D ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
| 4 | ibar | |- ( R < D -> ( D || ( N - R ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
|
| 5 | 4 | adantl | |- ( ( R e. NN0 /\ R < D ) -> ( D || ( N - R ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( D || ( N - R ) <-> ( R < D /\ D || ( N - R ) ) ) ) |
| 7 | nnz | |- ( D e. NN -> D e. ZZ ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> D e. ZZ ) |
| 9 | simp1 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> N e. ZZ ) |
|
| 10 | nn0z | |- ( R e. NN0 -> R e. ZZ ) |
|
| 11 | 10 | adantr | |- ( ( R e. NN0 /\ R < D ) -> R e. ZZ ) |
| 12 | 11 | 3ad2ant3 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> R e. ZZ ) |
| 13 | 9 12 | zsubcld | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( N - R ) e. ZZ ) |
| 14 | divides | |- ( ( D e. ZZ /\ ( N - R ) e. ZZ ) -> ( D || ( N - R ) <-> E. z e. ZZ ( z x. D ) = ( N - R ) ) ) |
|
| 15 | 8 13 14 | syl2anc | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( D || ( N - R ) <-> E. z e. ZZ ( z x. D ) = ( N - R ) ) ) |
| 16 | eqcom | |- ( ( z x. D ) = ( N - R ) <-> ( N - R ) = ( z x. D ) ) |
|
| 17 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> N e. CC ) |
| 19 | 18 | adantr | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> N e. CC ) |
| 20 | nn0cn | |- ( R e. NN0 -> R e. CC ) |
|
| 21 | 20 | adantr | |- ( ( R e. NN0 /\ R < D ) -> R e. CC ) |
| 22 | 21 | 3ad2ant3 | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> R e. CC ) |
| 23 | 22 | adantr | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> R e. CC ) |
| 24 | simpr | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> z e. ZZ ) |
|
| 25 | 8 | adantr | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> D e. ZZ ) |
| 26 | 24 25 | zmulcld | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> ( z x. D ) e. ZZ ) |
| 27 | 26 | zcnd | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> ( z x. D ) e. CC ) |
| 28 | 19 23 27 | subadd2d | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> ( ( N - R ) = ( z x. D ) <-> ( ( z x. D ) + R ) = N ) ) |
| 29 | 16 28 | bitrid | |- ( ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) /\ z e. ZZ ) -> ( ( z x. D ) = ( N - R ) <-> ( ( z x. D ) + R ) = N ) ) |
| 30 | 29 | rexbidva | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( E. z e. ZZ ( z x. D ) = ( N - R ) <-> E. z e. ZZ ( ( z x. D ) + R ) = N ) ) |
| 31 | 15 30 | bitrd | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( D || ( N - R ) <-> E. z e. ZZ ( ( z x. D ) + R ) = N ) ) |
| 32 | 3 6 31 | 3bitr2d | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( R = ( N mod D ) <-> E. z e. ZZ ( ( z x. D ) + R ) = N ) ) |
| 33 | 1 32 | bitrid | |- ( ( N e. ZZ /\ D e. NN /\ ( R e. NN0 /\ R < D ) ) -> ( ( N mod D ) = R <-> E. z e. ZZ ( ( z x. D ) + R ) = N ) ) |