This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constant multiplication in a modulo operation, see theorem 5.3 in ApostolNT p. 108. (Contributed by AV, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmulconst | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> ( ( C x. A ) mod ( C x. M ) ) = ( ( C x. B ) mod ( C x. M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> M e. ZZ ) |
| 3 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 4 | 3 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( A - B ) e. ZZ ) |
| 5 | 4 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( A - B ) e. ZZ ) |
| 6 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 7 | nnne0 | |- ( C e. NN -> C =/= 0 ) |
|
| 8 | 6 7 | jca | |- ( C e. NN -> ( C e. ZZ /\ C =/= 0 ) ) |
| 9 | 8 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C e. ZZ /\ C =/= 0 ) ) |
| 10 | 9 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( C e. ZZ /\ C =/= 0 ) ) |
| 11 | dvdscmulr | |- ( ( M e. ZZ /\ ( A - B ) e. ZZ /\ ( C e. ZZ /\ C =/= 0 ) ) -> ( ( C x. M ) || ( C x. ( A - B ) ) <-> M || ( A - B ) ) ) |
|
| 12 | 11 | bicomd | |- ( ( M e. ZZ /\ ( A - B ) e. ZZ /\ ( C e. ZZ /\ C =/= 0 ) ) -> ( M || ( A - B ) <-> ( C x. M ) || ( C x. ( A - B ) ) ) ) |
| 13 | 2 5 10 12 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( M || ( A - B ) <-> ( C x. M ) || ( C x. ( A - B ) ) ) ) |
| 14 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 15 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 16 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 17 | 14 15 16 | 3anim123i | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
| 18 | 3anrot | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) <-> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C e. CC /\ A e. CC /\ B e. CC ) ) |
| 20 | subdi | |- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( C x. ( A - B ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C x. ( A - B ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
| 22 | 21 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( C x. ( A - B ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
| 23 | 22 | breq2d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( ( C x. M ) || ( C x. ( A - B ) ) <-> ( C x. M ) || ( ( C x. A ) - ( C x. B ) ) ) ) |
| 24 | 13 23 | bitrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( M || ( A - B ) <-> ( C x. M ) || ( ( C x. A ) - ( C x. B ) ) ) ) |
| 25 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> M e. NN ) |
|
| 26 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> A e. ZZ ) |
|
| 27 | 26 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> A e. ZZ ) |
| 28 | simp2 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> B e. ZZ ) |
|
| 29 | 28 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> B e. ZZ ) |
| 30 | moddvds | |- ( ( M e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A mod M ) = ( B mod M ) <-> M || ( A - B ) ) ) |
|
| 31 | 25 27 29 30 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> M || ( A - B ) ) ) |
| 32 | simpl3 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> C e. NN ) |
|
| 33 | 32 25 | nnmulcld | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( C x. M ) e. NN ) |
| 34 | 6 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> C e. ZZ ) |
| 35 | 34 26 | zmulcld | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C x. A ) e. ZZ ) |
| 36 | 35 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( C x. A ) e. ZZ ) |
| 37 | 34 28 | zmulcld | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) -> ( C x. B ) e. ZZ ) |
| 38 | 37 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( C x. B ) e. ZZ ) |
| 39 | moddvds | |- ( ( ( C x. M ) e. NN /\ ( C x. A ) e. ZZ /\ ( C x. B ) e. ZZ ) -> ( ( ( C x. A ) mod ( C x. M ) ) = ( ( C x. B ) mod ( C x. M ) ) <-> ( C x. M ) || ( ( C x. A ) - ( C x. B ) ) ) ) |
|
| 40 | 33 36 38 39 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( ( ( C x. A ) mod ( C x. M ) ) = ( ( C x. B ) mod ( C x. M ) ) <-> ( C x. M ) || ( ( C x. A ) - ( C x. B ) ) ) ) |
| 41 | 24 31 40 | 3bitr4d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ C e. NN ) /\ M e. NN ) -> ( ( A mod M ) = ( B mod M ) <-> ( ( C x. A ) mod ( C x. M ) ) = ( ( C x. B ) mod ( C x. M ) ) ) ) |