This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 ↔ ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑘 = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) → ( 𝑘 · 𝑀 ) = ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑘 = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) → ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) = ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) |
| 3 | 2 | eqeq2d | ⊢ ( 𝑘 = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ↔ 𝐴 = ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) ) |
| 4 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 6 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 8 | rpne0 | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
| 10 | 5 7 9 | redivcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 / 𝑀 ) ∈ ℝ ) |
| 11 | 10 | flcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ∈ ℤ ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ∈ ℤ ) |
| 13 | flpmodeq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) = 𝐴 ) | |
| 14 | 4 13 | sylan | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) = 𝐴 ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 = ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → 𝐴 = ( ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) |
| 17 | 3 12 16 | rspcedvdw | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( ( 𝑘 · 𝑀 ) + 𝐵 ) = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) | |
| 19 | 18 | eqeq2d | ⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) ) |
| 20 | 19 | eqcoms | ⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + ( 𝐴 mod 𝑀 ) ) ) ) |
| 22 | 17 21 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| 23 | oveq1 | ⊢ ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) → ( 𝐴 mod 𝑀 ) = ( ( ( 𝑘 · 𝑀 ) + 𝐵 ) mod 𝑀 ) ) | |
| 24 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) | |
| 25 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → 𝑀 ∈ ℝ+ ) | |
| 26 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → 𝐵 ∈ ( 0 [,) 𝑀 ) ) | |
| 27 | muladdmodid | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ) → ( ( ( 𝑘 · 𝑀 ) + 𝐵 ) mod 𝑀 ) = 𝐵 ) | |
| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑘 · 𝑀 ) + 𝐵 ) mod 𝑀 ) = 𝐵 ) |
| 29 | 23 28 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) ∧ 𝑘 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) → ( 𝐴 mod 𝑀 ) = 𝐵 ) |
| 30 | 29 | rexlimdva2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) → ( 𝐴 mod 𝑀 ) = 𝐵 ) ) |
| 31 | 22 30 | impbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 0 [,) 𝑀 ) ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 ↔ ∃ 𝑘 ∈ ℤ 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |