This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flpmodeq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + ( 𝐴 mod 𝐵 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modvalr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) | |
| 2 | 1 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ) |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 5 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 6 | flcl | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℤ ) | |
| 7 | 6 | zcnd | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 9 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 11 | 8 10 | mulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ∈ ℂ ) |
| 12 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℂ ) |
| 14 | 4 11 13 | subaddd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ↔ ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + ( 𝐴 mod 𝐵 ) ) = 𝐴 ) ) |
| 15 | 2 14 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + ( 𝐴 mod 𝐵 ) ) = 𝐴 ) |