This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladd | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( k = ( |_ ` ( A / M ) ) -> ( k x. M ) = ( ( |_ ` ( A / M ) ) x. M ) ) |
|
| 2 | 1 | oveq1d | |- ( k = ( |_ ` ( A / M ) ) -> ( ( k x. M ) + ( A mod M ) ) = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) |
| 3 | 2 | eqeq2d | |- ( k = ( |_ ` ( A / M ) ) -> ( A = ( ( k x. M ) + ( A mod M ) ) <-> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) ) |
| 4 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 5 | 4 | adantr | |- ( ( A e. ZZ /\ M e. RR+ ) -> A e. RR ) |
| 6 | rpre | |- ( M e. RR+ -> M e. RR ) |
|
| 7 | 6 | adantl | |- ( ( A e. ZZ /\ M e. RR+ ) -> M e. RR ) |
| 8 | rpne0 | |- ( M e. RR+ -> M =/= 0 ) |
|
| 9 | 8 | adantl | |- ( ( A e. ZZ /\ M e. RR+ ) -> M =/= 0 ) |
| 10 | 5 7 9 | redivcld | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( A / M ) e. RR ) |
| 11 | 10 | flcld | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( |_ ` ( A / M ) ) e. ZZ ) |
| 12 | 11 | 3adant2 | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( |_ ` ( A / M ) ) e. ZZ ) |
| 13 | flpmodeq | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) = A ) |
|
| 14 | 4 13 | sylan | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) = A ) |
| 15 | 14 | eqcomd | |- ( ( A e. ZZ /\ M e. RR+ ) -> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) |
| 16 | 15 | 3adant2 | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) |
| 17 | 3 12 16 | rspcedvdw | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> E. k e. ZZ A = ( ( k x. M ) + ( A mod M ) ) ) |
| 18 | oveq2 | |- ( B = ( A mod M ) -> ( ( k x. M ) + B ) = ( ( k x. M ) + ( A mod M ) ) ) |
|
| 19 | 18 | eqeq2d | |- ( B = ( A mod M ) -> ( A = ( ( k x. M ) + B ) <-> A = ( ( k x. M ) + ( A mod M ) ) ) ) |
| 20 | 19 | eqcoms | |- ( ( A mod M ) = B -> ( A = ( ( k x. M ) + B ) <-> A = ( ( k x. M ) + ( A mod M ) ) ) ) |
| 21 | 20 | rexbidv | |- ( ( A mod M ) = B -> ( E. k e. ZZ A = ( ( k x. M ) + B ) <-> E. k e. ZZ A = ( ( k x. M ) + ( A mod M ) ) ) ) |
| 22 | 17 21 | syl5ibrcom | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| 23 | oveq1 | |- ( A = ( ( k x. M ) + B ) -> ( A mod M ) = ( ( ( k x. M ) + B ) mod M ) ) |
|
| 24 | simpr | |- ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> k e. ZZ ) |
|
| 25 | simpl3 | |- ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> M e. RR+ ) |
|
| 26 | simpl2 | |- ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> B e. ( 0 [,) M ) ) |
|
| 27 | muladdmodid | |- ( ( k e. ZZ /\ M e. RR+ /\ B e. ( 0 [,) M ) ) -> ( ( ( k x. M ) + B ) mod M ) = B ) |
|
| 28 | 24 25 26 27 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> ( ( ( k x. M ) + B ) mod M ) = B ) |
| 29 | 23 28 | sylan9eqr | |- ( ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) /\ A = ( ( k x. M ) + B ) ) -> ( A mod M ) = B ) |
| 30 | 29 | rexlimdva2 | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( E. k e. ZZ A = ( ( k x. M ) + B ) -> ( A mod M ) = B ) ) |
| 31 | 22 30 | impbid | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |