This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladdmodid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ ( 0 [,) 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝑀 ∈ ℝ+ → 0 ∈ ℝ ) | |
| 2 | rpxr | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ* ) | |
| 3 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝑀 ∈ ℝ+ → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
| 6 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 7 | rpcn | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) | |
| 8 | mulcl | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
| 11 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℂ ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 14 | 10 13 | addcomd | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( 𝑁 · 𝑀 ) + 𝐴 ) = ( 𝐴 + ( 𝑁 · 𝑀 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) ) |
| 16 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 18 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 20 | simpll | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝑁 ∈ ℤ ) | |
| 21 | modcyc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) | |
| 22 | 17 19 20 21 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
| 23 | 18 16 | anim12ci | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
| 24 | 3simpc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) |
| 26 | modid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) | |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) |
| 28 | 15 22 27 | 3eqtrd | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |
| 29 | 28 | ex | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) ) |
| 30 | 5 29 | sylbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) ) |
| 31 | 30 | 3impia | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ ( 0 [,) 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |