This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modid2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) | |
| 2 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) |
| 4 | breq2 | ⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( 0 ≤ ( 𝐴 mod 𝐵 ) ↔ 0 ≤ 𝐴 ) ) | |
| 5 | breq1 | ⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( ( 𝐴 mod 𝐵 ) < 𝐵 ↔ 𝐴 < 𝐵 ) ) | |
| 6 | 4 5 | anbi12d | ⊢ ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( ( 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| 7 | 3 6 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 𝐴 → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |
| 8 | modid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) | |
| 9 | 8 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) ) |
| 10 | 7 9 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 𝐴 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) ) |