This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modid2 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = A <-> ( 0 <_ A /\ A < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modge0 | |- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
|
| 2 | modlt | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
|
| 3 | 1 2 | jca | |- ( ( A e. RR /\ B e. RR+ ) -> ( 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) |
| 4 | breq2 | |- ( ( A mod B ) = A -> ( 0 <_ ( A mod B ) <-> 0 <_ A ) ) |
|
| 5 | breq1 | |- ( ( A mod B ) = A -> ( ( A mod B ) < B <-> A < B ) ) |
|
| 6 | 4 5 | anbi12d | |- ( ( A mod B ) = A -> ( ( 0 <_ ( A mod B ) /\ ( A mod B ) < B ) <-> ( 0 <_ A /\ A < B ) ) ) |
| 7 | 3 6 | syl5ibcom | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = A -> ( 0 <_ A /\ A < B ) ) ) |
| 8 | modid | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( 0 <_ A /\ A < B ) ) -> ( A mod B ) = A ) |
|
| 9 | 8 | ex | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( 0 <_ A /\ A < B ) -> ( A mod B ) = A ) ) |
| 10 | 7 9 | impbid | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = A <-> ( 0 <_ A /\ A < B ) ) ) |