This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modfsummod.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| modfsummod.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| modfsummod.2 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) | ||
| Assertion | modfsummod | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modfsummod.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | modfsummod.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | modfsummod.2 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) | |
| 4 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀ 𝑘 ∈ ∅ 𝐵 ∈ ℤ ) ) | |
| 5 | 4 | anbi1d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ↔ ( ∀ 𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ) |
| 6 | sumeq1 | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = ∅ → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) ) |
| 8 | sumeq1 | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) = Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = ∅ → ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ↔ ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 11 | 5 10 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 12 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) ) | |
| 13 | 12 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ↔ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ) |
| 14 | sumeq1 | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) ) |
| 16 | sumeq1 | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) = Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ↔ ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 19 | 13 18 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 20 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) ) | |
| 21 | 20 | anbi1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ↔ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ) |
| 22 | sumeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) ) |
| 24 | sumeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) ) | |
| 25 | 24 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ↔ ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 27 | 21 26 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 28 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) ) | |
| 29 | 28 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ↔ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ) |
| 30 | sumeq1 | ⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) ) |
| 32 | sumeq1 | ⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) ) | |
| 33 | 32 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 34 | 31 33 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 35 | 29 34 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑥 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑥 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 36 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 37 | 36 | oveq1i | ⊢ ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) = ( 0 mod 𝑁 ) |
| 38 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) = 0 | |
| 39 | 38 | a1i | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) = 0 ) |
| 40 | 39 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) = ( 0 mod 𝑁 ) ) |
| 41 | 37 40 | eqtr4id | ⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 42 | 41 | adantl | ⊢ ( ( ∀ 𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ∅ 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ∅ ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |
| 43 | simpll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → 𝑦 ∈ Fin ) | |
| 44 | simplrr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → 𝑁 ∈ ℕ ) | |
| 45 | ralun | ⊢ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) | |
| 46 | 45 | ex | ⊢ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) ) |
| 47 | 46 | ad2antrl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) ) |
| 48 | 47 | imp | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) |
| 49 | modfsummods | ⊢ ( ( 𝑦 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ) → ( ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) | |
| 50 | 43 44 48 49 | syl3anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → ( ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 52 | 51 | com23 | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) → ( ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 53 | 52 | ex | ⊢ ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) ) |
| 54 | 53 | a2d | ⊢ ( 𝑦 ∈ Fin → ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) ) |
| 55 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ↔ ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ) | |
| 56 | 55 | anbi1i | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) ) |
| 57 | 56 | imbi1i | ⊢ ( ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 58 | an32 | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ) | |
| 59 | 58 | imbi1i | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 60 | impexp | ⊢ ( ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) | |
| 61 | 57 59 60 | 3bitri | ⊢ ( ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ ℤ → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 62 | 54 61 | imbitrrdi | ⊢ ( 𝑦 ∈ Fin → ( ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝑦 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝑦 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) ) |
| 63 | 11 19 27 35 42 62 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 64 | 2 63 | syl | ⊢ ( 𝜑 → ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) ) |
| 65 | 3 1 64 | mp2and | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 mod 𝑁 ) = ( Σ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑁 ) mod 𝑁 ) ) |