This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in ApostolNT p. 107. (Contributed by Mario Carneiro, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modmul12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| modmul12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| modmul12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| modmul12d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | ||
| modmul12d.5 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| modmul12d.6 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) | ||
| modmul12d.7 | ⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) | ||
| Assertion | modmul12d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modmul12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | modmul12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 3 | modmul12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 4 | modmul12d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℤ ) | |
| 5 | modmul12d.5 | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 6 | modmul12d.6 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) | |
| 7 | modmul12d.7 | ⊢ ( 𝜑 → ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) | |
| 8 | 1 | zred | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 9 | 2 | zred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 10 | modmul1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐸 ) = ( 𝐵 mod 𝐸 ) ) → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐶 ) mod 𝐸 ) ) | |
| 11 | 8 9 3 5 6 10 | syl221anc | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐶 ) mod 𝐸 ) ) |
| 12 | 2 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 13 | 3 | zcnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 14 | 12 13 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) mod 𝐸 ) = ( ( 𝐶 · 𝐵 ) mod 𝐸 ) ) |
| 16 | 3 | zred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 17 | 4 | zred | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 18 | modmul1 | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+ ) ∧ ( 𝐶 mod 𝐸 ) = ( 𝐷 mod 𝐸 ) ) → ( ( 𝐶 · 𝐵 ) mod 𝐸 ) = ( ( 𝐷 · 𝐵 ) mod 𝐸 ) ) | |
| 19 | 16 17 2 5 7 18 | syl221anc | ⊢ ( 𝜑 → ( ( 𝐶 · 𝐵 ) mod 𝐸 ) = ( ( 𝐷 · 𝐵 ) mod 𝐸 ) ) |
| 20 | 4 | zcnd | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 21 | 20 12 | mulcomd | ⊢ ( 𝜑 → ( 𝐷 · 𝐵 ) = ( 𝐵 · 𝐷 ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐷 · 𝐵 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |
| 23 | 15 19 22 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |
| 24 | 11 23 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) mod 𝐸 ) = ( ( 𝐵 · 𝐷 ) mod 𝐸 ) ) |