This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function fulfilling the conditions of mhmmnd is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | ||
| ghmgrp.x | |||
| ghmgrp.y | |||
| ghmgrp.p | |||
| ghmgrp.q | |||
| ghmgrp.1 | |||
| mhmmnd.3 | |||
| Assertion | mhmfmhm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | ||
| 2 | ghmgrp.x | ||
| 3 | ghmgrp.y | ||
| 4 | ghmgrp.p | ||
| 5 | ghmgrp.q | ||
| 6 | ghmgrp.1 | ||
| 7 | mhmmnd.3 | ||
| 8 | 1 2 3 4 5 6 7 | mhmmnd | |
| 9 | fof | ||
| 10 | 6 9 | syl | |
| 11 | 1 | 3expb | |
| 12 | 11 | ralrimivva | |
| 13 | eqid | ||
| 14 | 1 2 3 4 5 6 7 13 | mhmid | |
| 15 | 10 12 14 | 3jca | |
| 16 | eqid | ||
| 17 | 2 3 4 5 13 16 | ismhm | |
| 18 | 7 8 15 17 | syl21anbrc |