This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function fulfilling the conditions of mhmmnd is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| ghmgrp.x | |- X = ( Base ` G ) |
||
| ghmgrp.y | |- Y = ( Base ` H ) |
||
| ghmgrp.p | |- .+ = ( +g ` G ) |
||
| ghmgrp.q | |- .+^ = ( +g ` H ) |
||
| ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
||
| mhmmnd.3 | |- ( ph -> G e. Mnd ) |
||
| Assertion | mhmfmhm | |- ( ph -> F e. ( G MndHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 2 | ghmgrp.x | |- X = ( Base ` G ) |
|
| 3 | ghmgrp.y | |- Y = ( Base ` H ) |
|
| 4 | ghmgrp.p | |- .+ = ( +g ` G ) |
|
| 5 | ghmgrp.q | |- .+^ = ( +g ` H ) |
|
| 6 | ghmgrp.1 | |- ( ph -> F : X -onto-> Y ) |
|
| 7 | mhmmnd.3 | |- ( ph -> G e. Mnd ) |
|
| 8 | 1 2 3 4 5 6 7 | mhmmnd | |- ( ph -> H e. Mnd ) |
| 9 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 10 | 6 9 | syl | |- ( ph -> F : X --> Y ) |
| 11 | 1 | 3expb | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 12 | 11 | ralrimivva | |- ( ph -> A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 13 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 14 | 1 2 3 4 5 6 7 13 | mhmid | |- ( ph -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 15 | 10 12 14 | 3jca | |- ( ph -> ( F : X --> Y /\ A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) ) |
| 16 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 17 | 2 3 4 5 13 16 | ismhm | |- ( F e. ( G MndHom H ) <-> ( ( G e. Mnd /\ H e. Mnd ) /\ ( F : X --> Y /\ A. x e. X A. y e. X ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) /\ ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) ) ) |
| 18 | 7 8 15 17 | syl21anbrc | |- ( ph -> F e. ( G MndHom H ) ) |