This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), then D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| metequiv.4 | |- K = ( MetOpen ` D ) |
||
| metss2.1 | |- ( ph -> C e. ( Met ` X ) ) |
||
| metss2.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| metss2.3 | |- ( ph -> R e. RR+ ) |
||
| metss2.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
||
| Assertion | metss2 | |- ( ph -> J C_ K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| 2 | metequiv.4 | |- K = ( MetOpen ` D ) |
|
| 3 | metss2.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| 4 | metss2.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 5 | metss2.3 | |- ( ph -> R e. RR+ ) |
|
| 6 | metss2.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
|
| 7 | simpr | |- ( ( x e. X /\ r e. RR+ ) -> r e. RR+ ) |
|
| 8 | rpdivcl | |- ( ( r e. RR+ /\ R e. RR+ ) -> ( r / R ) e. RR+ ) |
|
| 9 | 7 5 8 | syl2anr | |- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( r / R ) e. RR+ ) |
| 10 | 1 2 3 4 5 6 | metss2lem | |- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 11 | oveq2 | |- ( s = ( r / R ) -> ( x ( ball ` D ) s ) = ( x ( ball ` D ) ( r / R ) ) ) |
|
| 12 | 11 | sseq1d | |- ( s = ( r / R ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) <-> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
| 13 | 12 | rspcev | |- ( ( ( r / R ) e. RR+ /\ ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 14 | 9 10 13 | syl2anc | |- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 15 | 14 | ralrimivva | |- ( ph -> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 16 | metxmet | |- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
|
| 17 | 3 16 | syl | |- ( ph -> C e. ( *Met ` X ) ) |
| 18 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 19 | 4 18 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 20 | 1 2 | metss | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 21 | 17 19 20 | syl2anc | |- ( ph -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 22 | 15 21 | mpbird | |- ( ph -> J C_ K ) |