This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metres . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metreslem | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres | ⊢ ( 𝐷 ↾ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ) = ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) | |
| 2 | ineq2 | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( ( 𝑅 × 𝑅 ) ∩ dom 𝐷 ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) ) | |
| 3 | dmres | ⊢ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ dom 𝐷 ) | |
| 4 | inxp | ⊢ ( ( 𝑋 × 𝑋 ) ∩ ( 𝑅 × 𝑅 ) ) = ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) | |
| 5 | incom | ⊢ ( ( 𝑋 × 𝑋 ) ∩ ( 𝑅 × 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) | |
| 6 | 4 5 | eqtr3i | ⊢ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) = ( ( 𝑅 × 𝑅 ) ∩ ( 𝑋 × 𝑋 ) ) |
| 7 | 2 3 6 | 3eqtr4g | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) |
| 8 | 7 | reseq2d | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ dom ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |
| 9 | 1 8 | eqtr3id | ⊢ ( dom 𝐷 = ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) = ( 𝐷 ↾ ( ( 𝑋 ∩ 𝑅 ) × ( 𝑋 ∩ 𝑅 ) ) ) ) |