This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metres . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metreslem | |- ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdmres | |- ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( R X. R ) ) |
|
| 2 | ineq2 | |- ( dom D = ( X X. X ) -> ( ( R X. R ) i^i dom D ) = ( ( R X. R ) i^i ( X X. X ) ) ) |
|
| 3 | dmres | |- dom ( D |` ( R X. R ) ) = ( ( R X. R ) i^i dom D ) |
|
| 4 | inxp | |- ( ( X X. X ) i^i ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) |
|
| 5 | incom | |- ( ( X X. X ) i^i ( R X. R ) ) = ( ( R X. R ) i^i ( X X. X ) ) |
|
| 6 | 4 5 | eqtr3i | |- ( ( X i^i R ) X. ( X i^i R ) ) = ( ( R X. R ) i^i ( X X. X ) ) |
| 7 | 2 3 6 | 3eqtr4g | |- ( dom D = ( X X. X ) -> dom ( D |` ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) ) |
| 8 | 7 | reseq2d | |- ( dom D = ( X X. X ) -> ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| 9 | 1 8 | eqtr3id | |- ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |