This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| metdcn2.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| Assertion | metdcn2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | metdcn2.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 3 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | eqid | ⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) | |
| 5 | 1 4 | xmetdcn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ) |
| 7 | letopon | ⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) | |
| 8 | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 9 | 8 | frnd | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ran 𝐷 ⊆ ℝ ) |
| 10 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 11 | 10 | a1i | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ℝ ⊆ ℝ* ) |
| 12 | cnrest2 | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐷 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → ( 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ↔ 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) ) | |
| 13 | 7 9 11 12 | mp3an2i | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ordTop ‘ ≤ ) ) ↔ 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) ) |
| 14 | 6 13 | mpbid | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) ) |
| 15 | eqid | ⊢ ( ( ordTop ‘ ≤ ) ↾t ℝ ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) | |
| 16 | 15 | xrtgioo | ⊢ ( topGen ‘ ran (,) ) = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
| 17 | 2 16 | eqtri | ⊢ 𝐾 = ( ( ordTop ‘ ≤ ) ↾t ℝ ) |
| 18 | 17 | oveq2i | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( 𝐽 ×t 𝐽 ) Cn ( ( ordTop ‘ ≤ ) ↾t ℝ ) ) |
| 19 | 14 18 | eleqtrrdi | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |