This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| metdcn.2 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | metdcn | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | metdcn.2 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 4 | 3 | oveq2i | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( topGen ‘ ran (,) ) ) = ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) |
| 5 | 2 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 6 | cnrest2r | ⊢ ( 𝐾 ∈ Top → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) |
| 8 | 4 7 | eqsstri | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( topGen ‘ ran (,) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) |
| 9 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 10 | 1 9 | metdcn2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 11 | 8 10 | sselid | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |