This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| xmetdcn.2 | ⊢ 𝐾 = ( ordTop ‘ ≤ ) | ||
| Assertion | xmetdcn | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | xmetdcn.2 | ⊢ 𝐾 = ( ordTop ‘ ≤ ) | |
| 3 | letopon | ⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) | |
| 4 | 2 3 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ* ) |
| 5 | eqid | ⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) | |
| 6 | eqid | ⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) | |
| 7 | 5 6 | xrsmopn | ⊢ ( ordTop ‘ ≤ ) ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
| 8 | 2 7 | eqsstri | ⊢ 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
| 9 | 5 | xrsxmet | ⊢ ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) |
| 10 | 6 | mopnuni | ⊢ ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) → ℝ* = ∪ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) |
| 11 | 9 10 | ax-mp | ⊢ ℝ* = ∪ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
| 12 | 11 | cnss2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℝ* ) ∧ 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) → ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 13 | 4 8 12 | mp2an | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) |
| 14 | 1 5 6 | xmetdcn2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
| 15 | 13 14 | sselid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |