This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| metdcn2.2 | |- K = ( topGen ` ran (,) ) |
||
| Assertion | metdcn2 | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | metdcn2.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 4 | eqid | |- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
|
| 5 | 1 4 | xmetdcn | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
| 6 | 3 5 | syl | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) ) |
| 7 | letopon | |- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
|
| 8 | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
|
| 9 | 8 | frnd | |- ( D e. ( Met ` X ) -> ran D C_ RR ) |
| 10 | ressxr | |- RR C_ RR* |
|
| 11 | 10 | a1i | |- ( D e. ( Met ` X ) -> RR C_ RR* ) |
| 12 | cnrest2 | |- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ran D C_ RR /\ RR C_ RR* ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
|
| 13 | 7 9 11 12 | mp3an2i | |- ( D e. ( Met ` X ) -> ( D e. ( ( J tX J ) Cn ( ordTop ` <_ ) ) <-> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) ) |
| 14 | 6 13 | mpbid | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) ) |
| 15 | eqid | |- ( ( ordTop ` <_ ) |`t RR ) = ( ( ordTop ` <_ ) |`t RR ) |
|
| 16 | 15 | xrtgioo | |- ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR ) |
| 17 | 2 16 | eqtri | |- K = ( ( ordTop ` <_ ) |`t RR ) |
| 18 | 17 | oveq2i | |- ( ( J tX J ) Cn K ) = ( ( J tX J ) Cn ( ( ordTop ` <_ ) |`t RR ) ) |
| 19 | 14 18 | eleqtrrdi | |- ( D e. ( Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |