This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabex.1 | ⊢ 𝐴 ∈ V | |
| oprabex.2 | ⊢ 𝐵 ∈ V | ||
| oprabex.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝜑 ) | ||
| oprabex.4 | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } | ||
| Assertion | oprabex | ⊢ 𝐹 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabex.1 | ⊢ 𝐴 ∈ V | |
| 2 | oprabex.2 | ⊢ 𝐵 ∈ V | |
| 3 | oprabex.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝜑 ) | |
| 4 | oprabex.4 | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } | |
| 5 | moanimv | ⊢ ( ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝜑 ) ) | |
| 6 | 3 5 | mpbir | ⊢ ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) |
| 7 | 6 | funoprab | ⊢ Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } |
| 8 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 9 | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ⊆ ( 𝐴 × 𝐵 ) | |
| 10 | 8 9 | ssexi | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ∈ V |
| 11 | funex | ⊢ ( ( Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ∧ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ∈ V ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ∈ V ) | |
| 12 | 7 10 11 | mp2an | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ∈ V |
| 13 | 4 12 | eqeltri | ⊢ 𝐹 ∈ V |