This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | glbfun.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| Assertion | glbfun | ⊢ Fun 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glbfun.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 2 | funmpt | ⊢ Fun ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) | |
| 3 | funres | ⊢ ( Fun ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) → Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) | |
| 4 | 2 3 | ax-mp | ⊢ Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 7 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) | |
| 8 | id | ⊢ ( 𝐾 ∈ V → 𝐾 ∈ V ) | |
| 9 | 5 6 1 7 8 | glbfval | ⊢ ( 𝐾 ∈ V → 𝐺 = ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) |
| 10 | 9 | funeqd | ⊢ ( 𝐾 ∈ V → ( Fun 𝐺 ↔ Fun ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑠 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) } ) ) ) |
| 11 | 4 10 | mpbiri | ⊢ ( 𝐾 ∈ V → Fun 𝐺 ) |
| 12 | fun0 | ⊢ Fun ∅ | |
| 13 | fvprc | ⊢ ( ¬ 𝐾 ∈ V → ( glb ‘ 𝐾 ) = ∅ ) | |
| 14 | 1 13 | eqtrid | ⊢ ( ¬ 𝐾 ∈ V → 𝐺 = ∅ ) |
| 15 | 14 | funeqd | ⊢ ( ¬ 𝐾 ∈ V → ( Fun 𝐺 ↔ Fun ∅ ) ) |
| 16 | 12 15 | mpbiri | ⊢ ( ¬ 𝐾 ∈ V → Fun 𝐺 ) |
| 17 | 11 16 | pm2.61i | ⊢ Fun 𝐺 |