This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetfval.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| meetfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | meetfval2 | ⊢ ( 𝐾 ∈ 𝑉 → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 2 | meetfval.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | 1 2 | meetfval | ⊢ ( 𝐾 ∈ 𝑉 → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } ) |
| 4 | 1 | glbfun | ⊢ Fun 𝐺 |
| 5 | funbrfv2b | ⊢ ( Fun 𝐺 → ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ) |
| 7 | eqcom | ⊢ ( ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ↔ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) | |
| 8 | 7 | anbi2i | ⊢ ( ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ ( 𝐺 ‘ { 𝑥 , 𝑦 } ) = 𝑧 ) ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 9 | 6 8 | bitri | ⊢ ( { 𝑥 , 𝑦 } 𝐺 𝑧 ↔ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) ) |
| 10 | 9 | oprabbii | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } 𝐺 𝑧 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } |
| 11 | 3 10 | eqtrdi | ⊢ ( 𝐾 ∈ 𝑉 → ∧ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ∧ 𝑧 = ( 𝐺 ‘ { 𝑥 , 𝑦 } ) ) } ) |