This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| Assertion | mdetunilem1 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐹 ≠ 𝐺 ) | |
| 15 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) | |
| 16 | neeq2 | ⊢ ( 𝑧 = 𝐺 → ( 𝐹 ≠ 𝑧 ↔ 𝐹 ≠ 𝐺 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑧 = 𝐺 → ( 𝑧 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) | |
| 18 | 17 | eqeq2d | ⊢ ( 𝑧 = 𝐺 → ( ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑧 = 𝐺 → ( ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) |
| 20 | 16 19 | anbi12d | ⊢ ( 𝑧 = 𝐺 → ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) ) |
| 21 | 20 | imbi1d | ⊢ ( 𝑧 = 𝐺 → ( ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ( ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 22 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐸 ∈ 𝐵 ) | |
| 23 | simpr1 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐹 ∈ 𝑁 ) | |
| 24 | simpl1 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝜑 ) | |
| 25 | 24 11 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
| 26 | oveq | ⊢ ( 𝑥 = 𝐸 → ( 𝑦 𝑥 𝑤 ) = ( 𝑦 𝐸 𝑤 ) ) | |
| 27 | oveq | ⊢ ( 𝑥 = 𝐸 → ( 𝑧 𝑥 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑥 = 𝐸 → ( ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 30 | 29 | anbi2d | ⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) ↔ ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) ) |
| 31 | fveqeq2 | ⊢ ( 𝑥 = 𝐸 → ( ( 𝐷 ‘ 𝑥 ) = 0 ↔ ( 𝐷 ‘ 𝐸 ) = 0 ) ) | |
| 32 | 30 31 | imbi12d | ⊢ ( 𝑥 = 𝐸 → ( ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 33 | 32 | ralbidv | ⊢ ( 𝑥 = 𝐸 → ( ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 34 | neeq1 | ⊢ ( 𝑦 = 𝐹 → ( 𝑦 ≠ 𝑧 ↔ 𝐹 ≠ 𝑧 ) ) | |
| 35 | oveq1 | ⊢ ( 𝑦 = 𝐹 → ( 𝑦 𝐸 𝑤 ) = ( 𝐹 𝐸 𝑤 ) ) | |
| 36 | 35 | eqeq1d | ⊢ ( 𝑦 = 𝐹 → ( ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑦 = 𝐹 → ( ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 38 | 34 37 | anbi12d | ⊢ ( 𝑦 = 𝐹 → ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) ) |
| 39 | 38 | imbi1d | ⊢ ( 𝑦 = 𝐹 → ( ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑦 = 𝐹 → ( ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 41 | 33 40 | rspc2va | ⊢ ( ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) → ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 42 | 22 23 25 41 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 43 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐺 ∈ 𝑁 ) | |
| 44 | 21 42 43 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ( ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 45 | 14 15 44 | mp2and | ⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) |