This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions are equal almost everywhere, then one is measurable iff the other is. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfeqa.1 | |- ( ph -> A C_ RR ) |
|
| mbfeqa.2 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| mbfeqa.3 | |- ( ( ph /\ x e. ( B \ A ) ) -> C = D ) |
||
| mbfeqa.4 | |- ( ( ph /\ x e. B ) -> C e. CC ) |
||
| mbfeqa.5 | |- ( ( ph /\ x e. B ) -> D e. CC ) |
||
| Assertion | mbfeqa | |- ( ph -> ( ( x e. B |-> C ) e. MblFn <-> ( x e. B |-> D ) e. MblFn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfeqa.1 | |- ( ph -> A C_ RR ) |
|
| 2 | mbfeqa.2 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 3 | mbfeqa.3 | |- ( ( ph /\ x e. ( B \ A ) ) -> C = D ) |
|
| 4 | mbfeqa.4 | |- ( ( ph /\ x e. B ) -> C e. CC ) |
|
| 5 | mbfeqa.5 | |- ( ( ph /\ x e. B ) -> D e. CC ) |
|
| 6 | 3 | fveq2d | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Re ` C ) = ( Re ` D ) ) |
| 7 | 4 | recld | |- ( ( ph /\ x e. B ) -> ( Re ` C ) e. RR ) |
| 8 | 5 | recld | |- ( ( ph /\ x e. B ) -> ( Re ` D ) e. RR ) |
| 9 | 1 2 6 7 8 | mbfeqalem2 | |- ( ph -> ( ( x e. B |-> ( Re ` C ) ) e. MblFn <-> ( x e. B |-> ( Re ` D ) ) e. MblFn ) ) |
| 10 | 3 | fveq2d | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Im ` C ) = ( Im ` D ) ) |
| 11 | 4 | imcld | |- ( ( ph /\ x e. B ) -> ( Im ` C ) e. RR ) |
| 12 | 5 | imcld | |- ( ( ph /\ x e. B ) -> ( Im ` D ) e. RR ) |
| 13 | 1 2 10 11 12 | mbfeqalem2 | |- ( ph -> ( ( x e. B |-> ( Im ` C ) ) e. MblFn <-> ( x e. B |-> ( Im ` D ) ) e. MblFn ) ) |
| 14 | 9 13 | anbi12d | |- ( ph -> ( ( ( x e. B |-> ( Re ` C ) ) e. MblFn /\ ( x e. B |-> ( Im ` C ) ) e. MblFn ) <-> ( ( x e. B |-> ( Re ` D ) ) e. MblFn /\ ( x e. B |-> ( Im ` D ) ) e. MblFn ) ) ) |
| 15 | 4 | ismbfcn2 | |- ( ph -> ( ( x e. B |-> C ) e. MblFn <-> ( ( x e. B |-> ( Re ` C ) ) e. MblFn /\ ( x e. B |-> ( Im ` C ) ) e. MblFn ) ) ) |
| 16 | 5 | ismbfcn2 | |- ( ph -> ( ( x e. B |-> D ) e. MblFn <-> ( ( x e. B |-> ( Re ` D ) ) e. MblFn /\ ( x e. B |-> ( Im ` D ) ) e. MblFn ) ) ) |
| 17 | 14 15 16 | 3bitr4d | |- ( ph -> ( ( x e. B |-> C ) e. MblFn <-> ( x e. B |-> D ) e. MblFn ) ) |