This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | maxprmfct.1 | |- S = { z e. Prime | z || N } |
|
| Assertion | maxprmfct | |- ( N e. ( ZZ>= ` 2 ) -> ( ( S C_ ZZ /\ S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) /\ sup ( S , RR , < ) e. S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | maxprmfct.1 | |- S = { z e. Prime | z || N } |
|
| 2 | 1 | ssrab3 | |- S C_ Prime |
| 3 | prmz | |- ( y e. Prime -> y e. ZZ ) |
|
| 4 | 3 | ssriv | |- Prime C_ ZZ |
| 5 | 2 4 | sstri | |- S C_ ZZ |
| 6 | 5 | a1i | |- ( N e. ( ZZ>= ` 2 ) -> S C_ ZZ ) |
| 7 | exprmfct | |- ( N e. ( ZZ>= ` 2 ) -> E. y e. Prime y || N ) |
|
| 8 | breq1 | |- ( z = y -> ( z || N <-> y || N ) ) |
|
| 9 | 8 1 | elrab2 | |- ( y e. S <-> ( y e. Prime /\ y || N ) ) |
| 10 | 9 | exbii | |- ( E. y y e. S <-> E. y ( y e. Prime /\ y || N ) ) |
| 11 | n0 | |- ( S =/= (/) <-> E. y y e. S ) |
|
| 12 | df-rex | |- ( E. y e. Prime y || N <-> E. y ( y e. Prime /\ y || N ) ) |
|
| 13 | 10 11 12 | 3bitr4ri | |- ( E. y e. Prime y || N <-> S =/= (/) ) |
| 14 | 7 13 | sylib | |- ( N e. ( ZZ>= ` 2 ) -> S =/= (/) ) |
| 15 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 16 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 17 | 3 | anim1i | |- ( ( y e. Prime /\ y || N ) -> ( y e. ZZ /\ y || N ) ) |
| 18 | 9 17 | sylbi | |- ( y e. S -> ( y e. ZZ /\ y || N ) ) |
| 19 | dvdsle | |- ( ( y e. ZZ /\ N e. NN ) -> ( y || N -> y <_ N ) ) |
|
| 20 | 19 | expcom | |- ( N e. NN -> ( y e. ZZ -> ( y || N -> y <_ N ) ) ) |
| 21 | 20 | impd | |- ( N e. NN -> ( ( y e. ZZ /\ y || N ) -> y <_ N ) ) |
| 22 | 18 21 | syl5 | |- ( N e. NN -> ( y e. S -> y <_ N ) ) |
| 23 | 22 | ralrimiv | |- ( N e. NN -> A. y e. S y <_ N ) |
| 24 | 16 23 | syl | |- ( N e. ( ZZ>= ` 2 ) -> A. y e. S y <_ N ) |
| 25 | brralrspcev | |- ( ( N e. ZZ /\ A. y e. S y <_ N ) -> E. x e. ZZ A. y e. S y <_ x ) |
|
| 26 | 15 24 25 | syl2anc | |- ( N e. ( ZZ>= ` 2 ) -> E. x e. ZZ A. y e. S y <_ x ) |
| 27 | 6 14 26 | 3jca | |- ( N e. ( ZZ>= ` 2 ) -> ( S C_ ZZ /\ S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) |
| 28 | suprzcl2 | |- ( ( S C_ ZZ /\ S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) -> sup ( S , RR , < ) e. S ) |
|
| 29 | 27 28 | jccir | |- ( N e. ( ZZ>= ` 2 ) -> ( ( S C_ ZZ /\ S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) /\ sup ( S , RR , < ) e. S ) ) |