This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transpose of a square matrix is a square matrix of the same size. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposcl.a | |- A = ( N Mat R ) |
|
| mattposcl.b | |- B = ( Base ` A ) |
||
| Assertion | mattposcl | |- ( M e. B -> tpos M e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposcl.a | |- A = ( N Mat R ) |
|
| 2 | mattposcl.b | |- B = ( Base ` A ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 1 3 2 | matbas2i | |- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 5 | elmapi | |- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
|
| 6 | tposf | |- ( M : ( N X. N ) --> ( Base ` R ) -> tpos M : ( N X. N ) --> ( Base ` R ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( M e. B -> tpos M : ( N X. N ) --> ( Base ` R ) ) |
| 8 | fvex | |- ( Base ` R ) e. _V |
|
| 9 | 1 2 | matrcl | |- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 10 | 9 | simpld | |- ( M e. B -> N e. Fin ) |
| 11 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 12 | 11 | anidms | |- ( N e. Fin -> ( N X. N ) e. Fin ) |
| 13 | 10 12 | syl | |- ( M e. B -> ( N X. N ) e. Fin ) |
| 14 | elmapg | |- ( ( ( Base ` R ) e. _V /\ ( N X. N ) e. Fin ) -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) |
|
| 15 | 8 13 14 | sylancr | |- ( M e. B -> ( tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) <-> tpos M : ( N X. N ) --> ( Base ` R ) ) ) |
| 16 | 7 15 | mpbird | |- ( M e. B -> tpos M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 17 | 1 3 | matbas2 | |- ( ( N e. Fin /\ R e. _V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 18 | 9 17 | syl | |- ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 19 | 18 2 | eqtr4di | |- ( M e. B -> ( ( Base ` R ) ^m ( N X. N ) ) = B ) |
| 20 | 16 19 | eleqtrd | |- ( M e. B -> tpos M e. B ) |