This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mattposcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | mattpostpos | ⊢ ( 𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposcl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mattposcl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 1 3 2 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 5 | elmapi | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 7 | frel | ⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → Rel 𝑀 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑀 ∈ 𝐵 → Rel 𝑀 ) |
| 9 | relxp | ⊢ Rel ( 𝑁 × 𝑁 ) | |
| 10 | 6 | fdmd | ⊢ ( 𝑀 ∈ 𝐵 → dom 𝑀 = ( 𝑁 × 𝑁 ) ) |
| 11 | 10 | releqd | ⊢ ( 𝑀 ∈ 𝐵 → ( Rel dom 𝑀 ↔ Rel ( 𝑁 × 𝑁 ) ) ) |
| 12 | 9 11 | mpbiri | ⊢ ( 𝑀 ∈ 𝐵 → Rel dom 𝑀 ) |
| 13 | tpostpos2 | ⊢ ( ( Rel 𝑀 ∧ Rel dom 𝑀 ) → tpos tpos 𝑀 = 𝑀 ) | |
| 14 | 8 12 13 | syl2anc | ⊢ ( 𝑀 ∈ 𝐵 → tpos tpos 𝑀 = 𝑀 ) |