This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| mat1dim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mat1dim.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| Assertion | mat1dimscm | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 2 | mat1dim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | mat1dim.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 4 | opex | ⊢ 〈 𝐸 , 𝐸 〉 ∈ V | |
| 5 | 3 4 | eqeltri | ⊢ 𝑂 ∈ V |
| 6 | 5 | a1i | ⊢ ( 𝑌 ∈ 𝐵 → 𝑂 ∈ V ) |
| 7 | 6 | anim2i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑂 ∈ V ) ) |
| 8 | 7 | ancomd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) ) |
| 9 | fnsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) |
| 12 | xpsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) | |
| 13 | 8 12 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 15 | 14 | fneq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ↔ { 〈 𝑂 , 𝑋 〉 } Fn { 𝑂 } ) ) |
| 16 | 11 15 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ) |
| 17 | xpsng | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) | |
| 18 | 3 | sneqi | ⊢ { 𝑂 } = { 〈 𝐸 , 𝐸 〉 } |
| 19 | 17 18 | eqtr4di | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
| 20 | 19 | anidms | ⊢ ( 𝐸 ∈ 𝑉 → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { 𝑂 } ) |
| 22 | 21 | xpeq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { 𝑂 } × { 𝑋 } ) ) |
| 23 | 22 | fneq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } ↔ ( { 𝑂 } × { 𝑋 } ) Fn { 𝑂 } ) ) |
| 24 | 16 23 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) Fn { 𝑂 } ) |
| 25 | 5 | a1i | ⊢ ( 𝑋 ∈ 𝐵 → 𝑂 ∈ V ) |
| 26 | fnsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) | |
| 27 | 25 26 | sylan | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑌 〉 } Fn { 𝑂 } ) |
| 29 | snex | ⊢ { 𝑂 } ∈ V | |
| 30 | 29 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 𝑂 } ∈ V ) |
| 31 | inidm | ⊢ ( { 𝑂 } ∩ { 𝑂 } ) = { 𝑂 } | |
| 32 | elsni | ⊢ ( 𝑥 ∈ { 𝑂 } → 𝑥 = 𝑂 ) | |
| 33 | fveq2 | ⊢ ( 𝑥 = 𝑂 → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) ) | |
| 34 | 17 | anidms | ⊢ ( 𝐸 ∈ 𝑉 → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
| 36 | 35 | xpeq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) ) |
| 37 | 4 | a1i | ⊢ ( 𝑌 ∈ 𝐵 → 〈 𝐸 , 𝐸 〉 ∈ V ) |
| 38 | 37 | anim2i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 〈 𝐸 , 𝐸 〉 ∈ V ) ) |
| 39 | 38 | ancomd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) ) |
| 40 | xpsng | ⊢ ( ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 } ) | |
| 41 | 3 | eqcomi | ⊢ 〈 𝐸 , 𝐸 〉 = 𝑂 |
| 42 | 41 | opeq1i | ⊢ 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 = 〈 𝑂 , 𝑋 〉 |
| 43 | 42 | sneqi | ⊢ { 〈 〈 𝐸 , 𝐸 〉 , 𝑋 〉 } = { 〈 𝑂 , 𝑋 〉 } |
| 44 | 40 43 | eqtrdi | ⊢ ( ( 〈 𝐸 , 𝐸 〉 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 45 | 39 44 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 46 | 45 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝐸 , 𝐸 〉 } × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 47 | 36 46 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) = { 〈 𝑂 , 𝑋 〉 } ) |
| 48 | 47 | fveq1d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) ) |
| 49 | fvsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) | |
| 50 | 8 49 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
| 51 | 50 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑋 〉 } ‘ 𝑂 ) = 𝑋 ) |
| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑂 ) = 𝑋 ) |
| 53 | 33 52 | sylan9eq | ⊢ ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 54 | 53 | ex | ⊢ ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) ) |
| 55 | 32 54 | syl | ⊢ ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) ) |
| 56 | 55 | impcom | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 57 | fveq2 | ⊢ ( 𝑥 = 𝑂 → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) ) | |
| 58 | fvsng | ⊢ ( ( 𝑂 ∈ V ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) | |
| 59 | 25 58 | sylan | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑂 ) = 𝑌 ) |
| 61 | 57 60 | sylan9eq | ⊢ ( ( 𝑥 = 𝑂 ∧ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) |
| 62 | 61 | ex | ⊢ ( 𝑥 = 𝑂 → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) ) |
| 63 | 32 62 | syl | ⊢ ( 𝑥 ∈ { 𝑂 } → ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) ) |
| 64 | 63 | impcom | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ 𝑥 ∈ { 𝑂 } ) → ( { 〈 𝑂 , 𝑌 〉 } ‘ 𝑥 ) = 𝑌 ) |
| 65 | 24 28 30 30 31 56 64 | offval | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
| 66 | simprl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 67 | simpr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 68 | 67 | anim2i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ 𝑌 ∈ 𝐵 ) ) |
| 69 | df-3an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ 𝑌 ∈ 𝐵 ) ) | |
| 70 | 68 69 | sylibr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) ) |
| 71 | 1 2 3 | mat1dimbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑌 ∈ 𝐵 ) → { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) |
| 72 | 70 71 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) |
| 73 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 74 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 75 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 76 | eqid | ⊢ ( { 𝐸 } × { 𝐸 } ) = ( { 𝐸 } × { 𝐸 } ) | |
| 77 | 1 73 2 74 75 76 | matvsca2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ { 〈 𝑂 , 𝑌 〉 } ∈ ( Base ‘ 𝐴 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) ) |
| 78 | 66 72 77 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = ( ( ( { 𝐸 } × { 𝐸 } ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) { 〈 𝑂 , 𝑌 〉 } ) ) |
| 79 | 3anass | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ) | |
| 80 | 79 | biimpri | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 81 | 80 | adantlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 82 | 2 75 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) |
| 83 | 81 82 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) |
| 84 | fmptsn | ⊢ ( ( 𝑂 ∈ V ∧ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ∈ 𝐵 ) → { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) | |
| 85 | 5 83 84 | sylancr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } = ( 𝑥 ∈ { 𝑂 } ↦ ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
| 86 | 65 78 85 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝐴 ) { 〈 𝑂 , 𝑌 〉 } ) = { 〈 𝑂 , ( 𝑋 ( .r ‘ 𝑅 ) 𝑌 ) 〉 } ) |