This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1dim.a | |- A = ( { E } Mat R ) |
|
| mat1dim.b | |- B = ( Base ` R ) |
||
| mat1dim.o | |- O = <. E , E >. |
||
| Assertion | mat1dimid | |- ( ( R e. Ring /\ E e. V ) -> ( 1r ` A ) = { <. O , ( 1r ` R ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1dim.a | |- A = ( { E } Mat R ) |
|
| 2 | mat1dim.b | |- B = ( Base ` R ) |
|
| 3 | mat1dim.o | |- O = <. E , E >. |
|
| 4 | snfi | |- { E } e. Fin |
|
| 5 | 4 | a1i | |- ( E e. V -> { E } e. Fin ) |
| 6 | 5 | anim2i | |- ( ( R e. Ring /\ E e. V ) -> ( R e. Ring /\ { E } e. Fin ) ) |
| 7 | 6 | ancomd | |- ( ( R e. Ring /\ E e. V ) -> ( { E } e. Fin /\ R e. Ring ) ) |
| 8 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | 1 8 9 | mat1 | |- ( ( { E } e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 11 | 7 10 | syl | |- ( ( R e. Ring /\ E e. V ) -> ( 1r ` A ) = ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 12 | simpr | |- ( ( R e. Ring /\ E e. V ) -> E e. V ) |
|
| 13 | fvex | |- ( 1r ` R ) e. _V |
|
| 14 | fvex | |- ( 0g ` R ) e. _V |
|
| 15 | 13 14 | ifex | |- if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) e. _V |
| 16 | 15 | a1i | |- ( ( R e. Ring /\ E e. V ) -> if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) e. _V ) |
| 17 | eqid | |- ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) = ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) |
|
| 18 | eqeq1 | |- ( x = E -> ( x = y <-> E = y ) ) |
|
| 19 | 18 | ifbid | |- ( x = E -> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) = if ( E = y , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 20 | eqeq2 | |- ( y = E -> ( E = y <-> E = E ) ) |
|
| 21 | 20 | ifbid | |- ( y = E -> if ( E = y , ( 1r ` R ) , ( 0g ` R ) ) = if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 22 | 17 19 21 | mposn | |- ( ( E e. V /\ E e. V /\ if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) e. _V ) -> ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) = { <. <. E , E >. , if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) >. } ) |
| 23 | 12 12 16 22 | syl3anc | |- ( ( R e. Ring /\ E e. V ) -> ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) = { <. <. E , E >. , if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) >. } ) |
| 24 | eqid | |- E = E |
|
| 25 | 24 | iftruei | |- if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) = ( 1r ` R ) |
| 26 | 25 | opeq2i | |- <. <. E , E >. , if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) >. = <. <. E , E >. , ( 1r ` R ) >. |
| 27 | 26 | sneqi | |- { <. <. E , E >. , if ( E = E , ( 1r ` R ) , ( 0g ` R ) ) >. } = { <. <. E , E >. , ( 1r ` R ) >. } |
| 28 | 23 27 | eqtrdi | |- ( ( R e. Ring /\ E e. V ) -> ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) = { <. <. E , E >. , ( 1r ` R ) >. } ) |
| 29 | 3 | opeq1i | |- <. O , ( 1r ` R ) >. = <. <. E , E >. , ( 1r ` R ) >. |
| 30 | 29 | sneqi | |- { <. O , ( 1r ` R ) >. } = { <. <. E , E >. , ( 1r ` R ) >. } |
| 31 | 28 30 | eqtr4di | |- ( ( R e. Ring /\ E e. V ) -> ( x e. { E } , y e. { E } |-> if ( x = y , ( 1r ` R ) , ( 0g ` R ) ) ) = { <. O , ( 1r ` R ) >. } ) |
| 32 | 11 31 | eqtrd | |- ( ( R e. Ring /\ E e. V ) -> ( 1r ` A ) = { <. O , ( 1r ` R ) >. } ) |