This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalars of the matrix ring are the underlying ring. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | matsca2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| Assertion | matsca2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matsca2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 3 | 2 | anidms | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 4 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 5 | 4 | frlmsca | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑁 × 𝑁 ) ∈ Fin ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 6 | 5 | ancoms | ⊢ ( ( ( 𝑁 × 𝑁 ) ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 8 | 1 4 | matsca | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Scalar ‘ 𝐴 ) ) |
| 9 | 7 8 | eqtrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |