This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | |- S = { X } |
|
| mapsncnv.b | |- B e. _V |
||
| mapsncnv.x | |- X e. _V |
||
| mapsncnv.f | |- F = ( x e. ( B ^m S ) |-> ( x ` X ) ) |
||
| Assertion | mapsncnv | |- `' F = ( y e. B |-> ( S X. { y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | |- S = { X } |
|
| 2 | mapsncnv.b | |- B e. _V |
|
| 3 | mapsncnv.x | |- X e. _V |
|
| 4 | mapsncnv.f | |- F = ( x e. ( B ^m S ) |-> ( x ` X ) ) |
|
| 5 | elmapi | |- ( x e. ( B ^m { X } ) -> x : { X } --> B ) |
|
| 6 | 3 | snid | |- X e. { X } |
| 7 | ffvelcdm | |- ( ( x : { X } --> B /\ X e. { X } ) -> ( x ` X ) e. B ) |
|
| 8 | 5 6 7 | sylancl | |- ( x e. ( B ^m { X } ) -> ( x ` X ) e. B ) |
| 9 | eqid | |- { X } = { X } |
|
| 10 | 9 2 3 | mapsnconst | |- ( x e. ( B ^m { X } ) -> x = ( { X } X. { ( x ` X ) } ) ) |
| 11 | 8 10 | jca | |- ( x e. ( B ^m { X } ) -> ( ( x ` X ) e. B /\ x = ( { X } X. { ( x ` X ) } ) ) ) |
| 12 | eleq1 | |- ( y = ( x ` X ) -> ( y e. B <-> ( x ` X ) e. B ) ) |
|
| 13 | sneq | |- ( y = ( x ` X ) -> { y } = { ( x ` X ) } ) |
|
| 14 | 13 | xpeq2d | |- ( y = ( x ` X ) -> ( { X } X. { y } ) = ( { X } X. { ( x ` X ) } ) ) |
| 15 | 14 | eqeq2d | |- ( y = ( x ` X ) -> ( x = ( { X } X. { y } ) <-> x = ( { X } X. { ( x ` X ) } ) ) ) |
| 16 | 12 15 | anbi12d | |- ( y = ( x ` X ) -> ( ( y e. B /\ x = ( { X } X. { y } ) ) <-> ( ( x ` X ) e. B /\ x = ( { X } X. { ( x ` X ) } ) ) ) ) |
| 17 | 11 16 | syl5ibrcom | |- ( x e. ( B ^m { X } ) -> ( y = ( x ` X ) -> ( y e. B /\ x = ( { X } X. { y } ) ) ) ) |
| 18 | 17 | imp | |- ( ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) -> ( y e. B /\ x = ( { X } X. { y } ) ) ) |
| 19 | fconst6g | |- ( y e. B -> ( { X } X. { y } ) : { X } --> B ) |
|
| 20 | snex | |- { X } e. _V |
|
| 21 | 2 20 | elmap | |- ( ( { X } X. { y } ) e. ( B ^m { X } ) <-> ( { X } X. { y } ) : { X } --> B ) |
| 22 | 19 21 | sylibr | |- ( y e. B -> ( { X } X. { y } ) e. ( B ^m { X } ) ) |
| 23 | vex | |- y e. _V |
|
| 24 | 23 | fvconst2 | |- ( X e. { X } -> ( ( { X } X. { y } ) ` X ) = y ) |
| 25 | 6 24 | mp1i | |- ( y e. B -> ( ( { X } X. { y } ) ` X ) = y ) |
| 26 | 25 | eqcomd | |- ( y e. B -> y = ( ( { X } X. { y } ) ` X ) ) |
| 27 | 22 26 | jca | |- ( y e. B -> ( ( { X } X. { y } ) e. ( B ^m { X } ) /\ y = ( ( { X } X. { y } ) ` X ) ) ) |
| 28 | eleq1 | |- ( x = ( { X } X. { y } ) -> ( x e. ( B ^m { X } ) <-> ( { X } X. { y } ) e. ( B ^m { X } ) ) ) |
|
| 29 | fveq1 | |- ( x = ( { X } X. { y } ) -> ( x ` X ) = ( ( { X } X. { y } ) ` X ) ) |
|
| 30 | 29 | eqeq2d | |- ( x = ( { X } X. { y } ) -> ( y = ( x ` X ) <-> y = ( ( { X } X. { y } ) ` X ) ) ) |
| 31 | 28 30 | anbi12d | |- ( x = ( { X } X. { y } ) -> ( ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) <-> ( ( { X } X. { y } ) e. ( B ^m { X } ) /\ y = ( ( { X } X. { y } ) ` X ) ) ) ) |
| 32 | 27 31 | syl5ibrcom | |- ( y e. B -> ( x = ( { X } X. { y } ) -> ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) ) ) |
| 33 | 32 | imp | |- ( ( y e. B /\ x = ( { X } X. { y } ) ) -> ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) ) |
| 34 | 18 33 | impbii | |- ( ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) <-> ( y e. B /\ x = ( { X } X. { y } ) ) ) |
| 35 | 1 | oveq2i | |- ( B ^m S ) = ( B ^m { X } ) |
| 36 | 35 | eleq2i | |- ( x e. ( B ^m S ) <-> x e. ( B ^m { X } ) ) |
| 37 | 36 | anbi1i | |- ( ( x e. ( B ^m S ) /\ y = ( x ` X ) ) <-> ( x e. ( B ^m { X } ) /\ y = ( x ` X ) ) ) |
| 38 | 1 | xpeq1i | |- ( S X. { y } ) = ( { X } X. { y } ) |
| 39 | 38 | eqeq2i | |- ( x = ( S X. { y } ) <-> x = ( { X } X. { y } ) ) |
| 40 | 39 | anbi2i | |- ( ( y e. B /\ x = ( S X. { y } ) ) <-> ( y e. B /\ x = ( { X } X. { y } ) ) ) |
| 41 | 34 37 40 | 3bitr4i | |- ( ( x e. ( B ^m S ) /\ y = ( x ` X ) ) <-> ( y e. B /\ x = ( S X. { y } ) ) ) |
| 42 | 41 | opabbii | |- { <. y , x >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } = { <. y , x >. | ( y e. B /\ x = ( S X. { y } ) ) } |
| 43 | df-mpt | |- ( x e. ( B ^m S ) |-> ( x ` X ) ) = { <. x , y >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } |
|
| 44 | 4 43 | eqtri | |- F = { <. x , y >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } |
| 45 | 44 | cnveqi | |- `' F = `' { <. x , y >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } |
| 46 | cnvopab | |- `' { <. x , y >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } = { <. y , x >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } |
|
| 47 | 45 46 | eqtri | |- `' F = { <. y , x >. | ( x e. ( B ^m S ) /\ y = ( x ` X ) ) } |
| 48 | df-mpt | |- ( y e. B |-> ( S X. { y } ) ) = { <. y , x >. | ( y e. B /\ x = ( S X. { y } ) ) } |
|
| 49 | 42 47 48 | 3eqtr4i | |- `' F = ( y e. B |-> ( S X. { y } ) ) |