This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamuvs2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| mamuvs2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mamuvs2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mamuvs2.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | ||
| mamuvs2.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamuvs2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamuvs2.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | ||
| mamuvs2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamuvs2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| mamuvs2.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | ||
| Assertion | mamuvs2 | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamuvs2.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 2 | mamuvs2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | mamuvs2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | mamuvs2.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | |
| 5 | mamuvs2.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 6 | mamuvs2.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mamuvs2.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | |
| 8 | mamuvs2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 9 | mamuvs2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 10 | mamuvs2.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | |
| 11 | df-ov | ⊢ ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 12 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) | |
| 13 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) | |
| 14 | opelxpi | ⊢ ( ( 𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) |
| 16 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑁 × 𝑂 ) ∈ Fin ) | |
| 17 | 6 7 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑁 × 𝑂 ) ∈ Fin ) |
| 19 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) |
| 20 | elmapi | ⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 21 | ffn | ⊢ ( 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) | |
| 22 | 10 20 21 | 3syl | ⊢ ( 𝜑 → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 Fn ( 𝑁 × 𝑂 ) ) |
| 24 | df-ov | ⊢ ( 𝑗 𝑍 𝑘 ) = ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) | |
| 25 | 24 | eqcomi | ⊢ ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) |
| 26 | 25 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( 𝑍 ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑗 𝑍 𝑘 ) ) |
| 27 | 18 19 23 26 | ofc1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝑁 × 𝑂 ) ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 28 | 15 27 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ‘ 〈 𝑗 , 𝑘 〉 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 29 | 11 28 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) = ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 31 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 32 | 31 | crngmgp | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 33 | 1 32 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 35 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 36 | 8 35 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 38 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) | |
| 39 | 37 38 12 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ) |
| 40 | 10 20 | syl | ⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 42 | 41 12 13 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 43 | 31 2 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 44 | 31 3 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 45 | 43 44 | cmn12 | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 46 | 34 39 19 42 45 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑌 · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 47 | 30 46 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) = ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 48 | 47 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 49 | 48 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 50 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 51 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 52 | 1 51 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
| 54 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
| 55 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ 𝐵 ) |
| 56 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 57 | 2 3 56 39 42 | ringcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 58 | eqid | ⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) | |
| 59 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) | |
| 60 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 61 | 58 54 59 60 | fsuppmptdm | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 62 | 2 50 3 53 54 55 57 61 | gsummulc2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑌 · ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 63 | 49 62 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 64 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ CRing ) |
| 65 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
| 66 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
| 67 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 68 | fconst6g | ⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 69 | 9 68 | syl | ⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 70 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 71 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑁 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) | |
| 72 | 70 17 71 | sylancr | ⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ↔ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) ) |
| 73 | 69 72 | mpbird | ⊢ ( 𝜑 → ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 74 | 2 3 | ringvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ∧ 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 75 | 52 73 10 74 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 77 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) | |
| 78 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) | |
| 79 | 4 2 3 64 65 54 66 67 76 77 78 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) 𝑘 ) ) ) ) ) |
| 80 | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 81 | opelxpi | ⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 83 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) | |
| 84 | 5 7 83 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 86 | 2 52 4 5 6 7 8 10 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 87 | elmapi | ⊢ ( ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 88 | ffn | ⊢ ( ( 𝑋 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) | |
| 89 | 86 87 88 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 90 | 89 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 91 | df-ov | ⊢ ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 92 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 93 | 4 2 3 64 65 54 66 67 92 77 78 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 94 | 91 93 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 96 | 85 55 90 95 | ofc1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 97 | 82 96 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 98 | 80 97 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑌 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 99 | 63 79 98 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 100 | 99 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) |
| 101 | 2 52 4 5 6 7 8 75 | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 102 | elmapi | ⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 103 | ffn | ⊢ ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) | |
| 104 | 101 102 103 | 3syl | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 105 | fconst6g | ⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 106 | 9 105 | syl | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 107 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) | |
| 108 | 70 84 107 | sylancr | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 109 | 106 108 | mpbird | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 110 | 2 3 | ringvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑋 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 111 | 52 109 86 110 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 112 | elmapi | ⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 113 | ffn | ⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) | |
| 114 | 111 112 113 | 3syl | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 115 | eqfnov2 | ⊢ ( ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) | |
| 116 | 104 114 115 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 117 | 100 116 | mpbird | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( ( ( 𝑁 × 𝑂 ) × { 𝑌 } ) ∘f · 𝑍 ) ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑌 } ) ∘f · ( 𝑋 𝐹 𝑍 ) ) ) |