This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamucl.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | ||
| mamucl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamucl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamucl.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamucl.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamucl.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | ||
| Assertion | mamucl | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamucl.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 4 | mamucl.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 5 | mamucl.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mamucl.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 7 | mamucl.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 8 | mamucl.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | |
| 9 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 10 | 3 1 9 2 4 5 6 7 8 | mamuval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) ) |
| 11 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑅 ∈ CMnd ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → 𝑁 ∈ Fin ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 16 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 19 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) | |
| 20 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) | |
| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ) |
| 22 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) | |
| 23 | 8 22 | syl | ⊢ ( 𝜑 → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑁 × 𝑃 ) ⟶ 𝐵 ) |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑃 ) | |
| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑌 𝑘 ) ∈ 𝐵 ) |
| 27 | 1 9 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 𝑋 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑌 𝑘 ) ∈ 𝐵 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ∈ 𝐵 ) |
| 28 | 15 21 26 27 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ∈ 𝐵 ) |
| 29 | 28 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ∀ 𝑗 ∈ 𝑁 ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ∈ 𝐵 ) |
| 30 | 1 13 14 29 | gsummptcl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ∈ 𝐵 ) |
| 31 | 30 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ∈ 𝐵 ) |
| 32 | eqid | ⊢ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) | |
| 33 | 32 | fmpo | ⊢ ( ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ∈ 𝐵 ↔ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 ) |
| 34 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 35 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑃 ∈ Fin ) → ( 𝑀 × 𝑃 ) ∈ Fin ) | |
| 36 | 4 6 35 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑃 ) ∈ Fin ) |
| 37 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑃 ) ∈ Fin ) → ( ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ↔ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 ) ) | |
| 38 | 34 36 37 | sylancr | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ↔ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) : ( 𝑀 × 𝑃 ) ⟶ 𝐵 ) ) |
| 39 | 33 38 | bitr4id | ⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑃 ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ∈ 𝐵 ↔ ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) ) |
| 40 | 31 39 | mpbid | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑗 𝑌 𝑘 ) ) ) ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) |
| 41 | 10 40 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑃 ) ) ) |