This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamufval.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| mamufval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mamufval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mamufval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| mamufval.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamufval.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamufval.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamuval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamuval.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | ||
| mamufv.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑀 ) | ||
| mamufv.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑃 ) | ||
| Assertion | mamufv | ⊢ ( 𝜑 → ( 𝐼 ( 𝑋 𝐹 𝑌 ) 𝐾 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamufval.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 2 | mamufval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | mamufval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | mamufval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 5 | mamufval.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 6 | mamufval.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mamufval.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 8 | mamuval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 9 | mamuval.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | |
| 10 | mamufv.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑀 ) | |
| 11 | mamufv.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑃 ) | |
| 12 | 1 2 3 4 5 6 7 8 9 | mamuval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑖 ∈ 𝑀 , 𝑘 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 𝑋 𝑗 ) = ( 𝐼 𝑋 𝑗 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑗 𝑌 𝑘 ) = ( 𝑗 𝑌 𝐾 ) ) | |
| 15 | 13 14 | oveqan12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 = 𝐾 ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) = ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑘 = 𝐾 ) ) → ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) = ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) |
| 17 | 16 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑘 = 𝐾 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑘 = 𝐾 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑗 ) · ( 𝑗 𝑌 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) ) ) |
| 19 | ovexd | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) ) ∈ V ) | |
| 20 | 12 18 10 11 19 | ovmpod | ⊢ ( 𝜑 → ( 𝐼 ( 𝑋 𝐹 𝑌 ) 𝐾 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝐼 𝑋 𝑗 ) · ( 𝑗 𝑌 𝐾 ) ) ) ) ) |