This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mamudi.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | ||
| mamudi.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamudi.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamudi.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | ||
| mamuvs1.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mamuvs1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mamuvs1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamuvs1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | ||
| Assertion | mamuvs1 | ⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamucl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | mamucl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | mamudi.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑂 〉 ) | |
| 4 | mamudi.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 5 | mamudi.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 6 | mamudi.o | ⊢ ( 𝜑 → 𝑂 ∈ Fin ) | |
| 7 | mamuvs1.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mamuvs1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | mamuvs1.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 10 | mamuvs1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑅 ∈ Ring ) |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑁 ∈ Fin ) |
| 14 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 16 | elmapi | ⊢ ( 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 17 | 9 16 | syl | ⊢ ( 𝜑 → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 19 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑀 ) | |
| 20 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) | |
| 21 | 18 19 20 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ) |
| 22 | elmapi | ⊢ ( 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) | |
| 23 | 10 22 | syl | ⊢ ( 𝜑 → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑍 : ( 𝑁 × 𝑂 ) ⟶ 𝐵 ) |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ 𝑂 ) | |
| 26 | 24 20 25 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) |
| 27 | 1 7 15 21 26 | ringcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ 𝐵 ) |
| 28 | eqid | ⊢ ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) | |
| 29 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ∈ V ) | |
| 30 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 31 | 28 13 29 30 | fsuppmptdm | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 32 | 1 11 7 12 13 14 27 31 | gsummulc2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 33 | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) | |
| 34 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑖 ∈ 𝑀 ) | |
| 35 | opelxpi | ⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) | |
| 36 | 34 35 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) |
| 37 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑀 × 𝑁 ) ∈ Fin ) | |
| 38 | 4 5 37 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) ∈ Fin ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 × 𝑁 ) ∈ Fin ) |
| 40 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐵 ) |
| 41 | ffn | ⊢ ( 𝑌 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) | |
| 42 | 9 16 41 | 3syl | ⊢ ( 𝜑 → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → 𝑌 Fn ( 𝑀 × 𝑁 ) ) |
| 44 | df-ov | ⊢ ( 𝑖 𝑌 𝑗 ) = ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) | |
| 45 | 44 | eqcomi | ⊢ ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) |
| 46 | 45 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑖 𝑌 𝑗 ) ) |
| 47 | 39 40 43 46 | ofc1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) ∧ 〈 𝑖 , 𝑗 〉 ∈ ( 𝑀 × 𝑁 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 48 | 36 47 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ‘ 〈 𝑖 , 𝑗 〉 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 49 | 33 48 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) = ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) ) |
| 50 | 49 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) ) |
| 51 | 1 7 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑖 𝑌 𝑗 ) ∈ 𝐵 ∧ ( 𝑗 𝑍 𝑘 ) ∈ 𝐵 ) ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 52 | 15 40 21 26 51 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑋 · ( 𝑖 𝑌 𝑗 ) ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 53 | 50 52 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) = ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) |
| 54 | 53 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) = ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 55 | 54 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( 𝑋 · ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 56 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑀 ∈ Fin ) |
| 57 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑂 ∈ Fin ) |
| 58 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 59 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑂 ) ) ) |
| 60 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 𝑘 ∈ 𝑂 ) | |
| 61 | 3 1 7 12 56 13 57 58 59 34 60 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 62 | 61 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 𝑌 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) ) |
| 63 | 32 55 62 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 64 | fconst6g | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 65 | 8 64 | syl | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 66 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 67 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑁 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) | |
| 68 | 66 38 67 | sylancr | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ↔ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) ) |
| 69 | 65 68 | mpbird | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 70 | 1 7 | ringvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ∧ 𝑌 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 71 | 2 69 9 70 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 73 | 3 1 7 12 56 13 57 72 59 34 60 | mamufv | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑅 Σg ( 𝑗 ∈ 𝑁 ↦ ( ( 𝑖 ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝑗 ) · ( 𝑗 𝑍 𝑘 ) ) ) ) ) |
| 74 | df-ov | ⊢ ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 75 | opelxpi | ⊢ ( ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) |
| 77 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑂 ∈ Fin ) → ( 𝑀 × 𝑂 ) ∈ Fin ) | |
| 78 | 4 6 77 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑀 × 𝑂 ) ∈ Fin ) |
| 80 | 1 2 3 4 5 6 9 10 | mamucl | ⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 81 | elmapi | ⊢ ( ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 82 | ffn | ⊢ ( ( 𝑌 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) | |
| 83 | 80 81 82 | 3syl | ⊢ ( 𝜑 → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 84 | 83 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑌 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 85 | df-ov | ⊢ ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) = ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) | |
| 86 | 85 | eqcomi | ⊢ ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) |
| 87 | 86 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( 𝑌 𝐹 𝑍 ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) |
| 88 | 79 14 84 87 | ofc1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) ∧ 〈 𝑖 , 𝑘 〉 ∈ ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 89 | 76 88 | mpdan | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ‘ 〈 𝑖 , 𝑘 〉 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 90 | 74 89 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) = ( 𝑋 · ( 𝑖 ( 𝑌 𝐹 𝑍 ) 𝑘 ) ) ) |
| 91 | 63 73 90 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂 ) ) → ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
| 92 | 91 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) |
| 93 | 1 2 3 4 5 6 71 10 | mamucl | ⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 94 | elmapi | ⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 95 | ffn | ⊢ ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) | |
| 96 | 93 94 95 | 3syl | ⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ) |
| 97 | fconst6g | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 98 | 8 97 | syl | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) |
| 99 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑀 × 𝑂 ) ∈ Fin ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) | |
| 100 | 66 78 99 | sylancr | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ↔ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) ) |
| 101 | 98 100 | mpbird | ⊢ ( 𝜑 → ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 102 | 1 7 | ringvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ∧ ( 𝑌 𝐹 𝑍 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 103 | 2 101 80 102 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) ) |
| 104 | elmapi | ⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑂 ) ) → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 ) | |
| 105 | ffn | ⊢ ( ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) : ( 𝑀 × 𝑂 ) ⟶ 𝐵 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) | |
| 106 | 103 104 105 | 3syl | ⊢ ( 𝜑 → ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) |
| 107 | eqfnov2 | ⊢ ( ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) Fn ( 𝑀 × 𝑂 ) ∧ ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) Fn ( 𝑀 × 𝑂 ) ) → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) | |
| 108 | 96 106 107 | syl2anc | ⊢ ( 𝜑 → ( ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ↔ ∀ 𝑖 ∈ 𝑀 ∀ 𝑘 ∈ 𝑂 ( 𝑖 ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) 𝑘 ) = ( 𝑖 ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) 𝑘 ) ) ) |
| 109 | 92 108 | mpbird | ⊢ ( 𝜑 → ( ( ( ( 𝑀 × 𝑁 ) × { 𝑋 } ) ∘f · 𝑌 ) 𝐹 𝑍 ) = ( ( ( 𝑀 × 𝑂 ) × { 𝑋 } ) ∘f · ( 𝑌 𝐹 𝑍 ) ) ) |