This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every solution of the equation A * X = B for matrices A and B is a matrix. (Contributed by AV, 10-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamudm.e | ⊢ 𝐸 = ( 𝑅 freeLMod ( 𝑀 × 𝑁 ) ) | |
| mamudm.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| mamudm.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑃 ) ) | ||
| mamudm.c | ⊢ 𝐶 = ( Base ‘ 𝐹 ) | ||
| mamudm.m | ⊢ × = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | ||
| mamufacex.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑀 × 𝑃 ) ) | ||
| mamufacex.d | ⊢ 𝐷 = ( Base ‘ 𝐺 ) | ||
| Assertion | mamufacex | ⊢ ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamudm.e | ⊢ 𝐸 = ( 𝑅 freeLMod ( 𝑀 × 𝑁 ) ) | |
| 2 | mamudm.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 3 | mamudm.f | ⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑃 ) ) | |
| 4 | mamudm.c | ⊢ 𝐶 = ( Base ‘ 𝐹 ) | |
| 5 | mamudm.m | ⊢ × = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 6 | mamufacex.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑀 × 𝑃 ) ) | |
| 7 | mamufacex.d | ⊢ 𝐷 = ( Base ‘ 𝐺 ) | |
| 8 | 2a1 | ⊢ ( 𝑍 ∈ 𝐶 → ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) ) | |
| 9 | 1 2 3 4 5 | mamudm | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → dom × = ( 𝐵 × 𝐶 ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → dom × = ( 𝐵 × 𝐶 ) ) |
| 11 | 10 | 3adant1 | ⊢ ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → dom × = ( 𝐵 × 𝐶 ) ) |
| 12 | simpl | ⊢ ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ¬ 𝑍 ∈ 𝐶 ) | |
| 13 | 12 | intnand | ⊢ ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ¬ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) ) |
| 14 | ndmovg | ⊢ ( ( dom × = ( 𝐵 × 𝐶 ) ∧ ¬ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐶 ) ) → ( 𝑋 × 𝑍 ) = ∅ ) | |
| 15 | 11 13 14 | syl2an2 | ⊢ ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ( 𝑋 × 𝑍 ) = ∅ ) |
| 16 | eqeq1 | ⊢ ( ( 𝑋 × 𝑍 ) = ∅ → ( ( 𝑋 × 𝑍 ) = 𝑌 ↔ ∅ = 𝑌 ) ) | |
| 17 | xpfi | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑃 ∈ Fin ) → ( 𝑀 × 𝑃 ) ∈ Fin ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) → ( 𝑀 × 𝑃 ) ∈ Fin ) |
| 19 | xpnz | ⊢ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ↔ ( 𝑀 × 𝑃 ) ≠ ∅ ) | |
| 20 | 19 | biimpi | ⊢ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) → ( 𝑀 × 𝑃 ) ≠ ∅ ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 22 | 6 21 7 | elfrlmbasn0 | ⊢ ( ( ( 𝑀 × 𝑃 ) ∈ Fin ∧ ( 𝑀 × 𝑃 ) ≠ ∅ ) → ( 𝑌 ∈ 𝐷 → 𝑌 ≠ ∅ ) ) |
| 23 | 18 20 22 | syl2an | ⊢ ( ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ∧ ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ) → ( 𝑌 ∈ 𝐷 → 𝑌 ≠ ∅ ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) → ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) → ( 𝑌 ∈ 𝐷 → 𝑌 ≠ ∅ ) ) ) |
| 25 | 24 | com13 | ⊢ ( 𝑌 ∈ 𝐷 → ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) → ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) → 𝑌 ≠ ∅ ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) → ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) → ( ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) → 𝑌 ≠ ∅ ) ) ) |
| 27 | 26 | 3imp21 | ⊢ ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → 𝑌 ≠ ∅ ) |
| 28 | eqneqall | ⊢ ( 𝑌 = ∅ → ( 𝑌 ≠ ∅ → 𝑍 ∈ 𝐶 ) ) | |
| 29 | 27 28 | syl5com | ⊢ ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → ( 𝑌 = ∅ → 𝑍 ∈ 𝐶 ) ) |
| 30 | 29 | adantl | ⊢ ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ( 𝑌 = ∅ → 𝑍 ∈ 𝐶 ) ) |
| 31 | 30 | com12 | ⊢ ( 𝑌 = ∅ → ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → 𝑍 ∈ 𝐶 ) ) |
| 32 | 31 | eqcoms | ⊢ ( ∅ = 𝑌 → ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → 𝑍 ∈ 𝐶 ) ) |
| 33 | 16 32 | biimtrdi | ⊢ ( ( 𝑋 × 𝑍 ) = ∅ → ( ( 𝑋 × 𝑍 ) = 𝑌 → ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → 𝑍 ∈ 𝐶 ) ) ) |
| 34 | 33 | com23 | ⊢ ( ( 𝑋 × 𝑍 ) = ∅ → ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) ) |
| 35 | 15 34 | mpcom | ⊢ ( ( ¬ 𝑍 ∈ 𝐶 ∧ ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) |
| 36 | 35 | ex | ⊢ ( ¬ 𝑍 ∈ 𝐶 → ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) ) |
| 37 | 8 36 | pm2.61i | ⊢ ( ( ( 𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅ ) ∧ ( 𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷 ) ∧ ( 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin ) ) → ( ( 𝑋 × 𝑍 ) = 𝑌 → 𝑍 ∈ 𝐶 ) ) |