This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every solution of the equation A * X = B for matrices A and B is a matrix. (Contributed by AV, 10-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamudm.e | |- E = ( R freeLMod ( M X. N ) ) |
|
| mamudm.b | |- B = ( Base ` E ) |
||
| mamudm.f | |- F = ( R freeLMod ( N X. P ) ) |
||
| mamudm.c | |- C = ( Base ` F ) |
||
| mamudm.m | |- .X. = ( R maMul <. M , N , P >. ) |
||
| mamufacex.g | |- G = ( R freeLMod ( M X. P ) ) |
||
| mamufacex.d | |- D = ( Base ` G ) |
||
| Assertion | mamufacex | |- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamudm.e | |- E = ( R freeLMod ( M X. N ) ) |
|
| 2 | mamudm.b | |- B = ( Base ` E ) |
|
| 3 | mamudm.f | |- F = ( R freeLMod ( N X. P ) ) |
|
| 4 | mamudm.c | |- C = ( Base ` F ) |
|
| 5 | mamudm.m | |- .X. = ( R maMul <. M , N , P >. ) |
|
| 6 | mamufacex.g | |- G = ( R freeLMod ( M X. P ) ) |
|
| 7 | mamufacex.d | |- D = ( Base ` G ) |
|
| 8 | 2a1 | |- ( Z e. C -> ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) ) |
|
| 9 | 1 2 3 4 5 | mamudm | |- ( ( R e. V /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) ) |
| 10 | 9 | adantlr | |- ( ( ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) ) |
| 11 | 10 | 3adant1 | |- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> dom .X. = ( B X. C ) ) |
| 12 | simpl | |- ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> -. Z e. C ) |
|
| 13 | 12 | intnand | |- ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> -. ( X e. B /\ Z e. C ) ) |
| 14 | ndmovg | |- ( ( dom .X. = ( B X. C ) /\ -. ( X e. B /\ Z e. C ) ) -> ( X .X. Z ) = (/) ) |
|
| 15 | 11 13 14 | syl2an2 | |- ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( X .X. Z ) = (/) ) |
| 16 | eqeq1 | |- ( ( X .X. Z ) = (/) -> ( ( X .X. Z ) = Y <-> (/) = Y ) ) |
|
| 17 | xpfi | |- ( ( M e. Fin /\ P e. Fin ) -> ( M X. P ) e. Fin ) |
|
| 18 | 17 | 3adant2 | |- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( M X. P ) e. Fin ) |
| 19 | xpnz | |- ( ( M =/= (/) /\ P =/= (/) ) <-> ( M X. P ) =/= (/) ) |
|
| 20 | 19 | biimpi | |- ( ( M =/= (/) /\ P =/= (/) ) -> ( M X. P ) =/= (/) ) |
| 21 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 22 | 6 21 7 | elfrlmbasn0 | |- ( ( ( M X. P ) e. Fin /\ ( M X. P ) =/= (/) ) -> ( Y e. D -> Y =/= (/) ) ) |
| 23 | 18 20 22 | syl2an | |- ( ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) /\ ( M =/= (/) /\ P =/= (/) ) ) -> ( Y e. D -> Y =/= (/) ) ) |
| 24 | 23 | ex | |- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( ( M =/= (/) /\ P =/= (/) ) -> ( Y e. D -> Y =/= (/) ) ) ) |
| 25 | 24 | com13 | |- ( Y e. D -> ( ( M =/= (/) /\ P =/= (/) ) -> ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> Y =/= (/) ) ) ) |
| 26 | 25 | adantl | |- ( ( R e. V /\ Y e. D ) -> ( ( M =/= (/) /\ P =/= (/) ) -> ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> Y =/= (/) ) ) ) |
| 27 | 26 | 3imp21 | |- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> Y =/= (/) ) |
| 28 | eqneqall | |- ( Y = (/) -> ( Y =/= (/) -> Z e. C ) ) |
|
| 29 | 27 28 | syl5com | |- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( Y = (/) -> Z e. C ) ) |
| 30 | 29 | adantl | |- ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( Y = (/) -> Z e. C ) ) |
| 31 | 30 | com12 | |- ( Y = (/) -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) ) |
| 32 | 31 | eqcoms | |- ( (/) = Y -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) ) |
| 33 | 16 32 | biimtrdi | |- ( ( X .X. Z ) = (/) -> ( ( X .X. Z ) = Y -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> Z e. C ) ) ) |
| 34 | 33 | com23 | |- ( ( X .X. Z ) = (/) -> ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) ) |
| 35 | 15 34 | mpcom | |- ( ( -. Z e. C /\ ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) |
| 36 | 35 | ex | |- ( -. Z e. C -> ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) ) |
| 37 | 8 36 | pm2.61i | |- ( ( ( M =/= (/) /\ P =/= (/) ) /\ ( R e. V /\ Y e. D ) /\ ( M e. Fin /\ N e. Fin /\ P e. Fin ) ) -> ( ( X .X. Z ) = Y -> Z e. C ) ) |