This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mamures.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| mamures.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝐼 , 𝑁 , 𝑃 〉 ) | ||
| mamures.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mamures.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| mamures.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | ||
| mamures.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mamures.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | ||
| mamures.i | ⊢ ( 𝜑 → 𝐼 ⊆ 𝑀 ) | ||
| mamures.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | ||
| mamures.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | ||
| Assertion | mamures | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ↾ ( 𝐼 × 𝑃 ) ) = ( ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝐺 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamures.f | ⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑁 , 𝑃 〉 ) | |
| 2 | mamures.g | ⊢ 𝐺 = ( 𝑅 maMul 〈 𝐼 , 𝑁 , 𝑃 〉 ) | |
| 3 | mamures.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | mamures.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 5 | mamures.m | ⊢ ( 𝜑 → 𝑀 ∈ Fin ) | |
| 6 | mamures.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | mamures.p | ⊢ ( 𝜑 → 𝑃 ∈ Fin ) | |
| 8 | mamures.i | ⊢ ( 𝜑 → 𝐼 ⊆ 𝑀 ) | |
| 9 | mamures.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) | |
| 10 | mamures.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑃 ) ) ) | |
| 11 | ssidd | ⊢ ( 𝜑 → 𝑃 ⊆ 𝑃 ) | |
| 12 | resmpo | ⊢ ( ( 𝐼 ⊆ 𝑀 ∧ 𝑃 ⊆ 𝑃 ) → ( ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ↾ ( 𝐼 × 𝑃 ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) | |
| 13 | 8 11 12 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ↾ ( 𝐼 × 𝑃 ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) |
| 14 | ovres | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝑁 ) → ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) = ( 𝑖 𝑋 𝑘 ) ) | |
| 15 | 14 | 3ad2antl2 | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) = ( 𝑖 𝑋 𝑘 ) ) |
| 16 | 15 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑖 𝑋 𝑘 ) = ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃 ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) = ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) |
| 18 | 17 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃 ) → ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) = ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃 ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) |
| 20 | 19 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) |
| 21 | 13 20 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ↾ ( 𝐼 × 𝑃 ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) |
| 22 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 23 | 1 3 22 4 5 6 7 9 10 | mamuval | ⊢ ( 𝜑 → ( 𝑋 𝐹 𝑌 ) = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) |
| 24 | 23 | reseq1d | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ↾ ( 𝐼 × 𝑃 ) ) = ( ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ↾ ( 𝐼 × 𝑃 ) ) ) |
| 25 | 5 8 | ssfid | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 26 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) | |
| 27 | 9 26 | syl | ⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 28 | xpss1 | ⊢ ( 𝐼 ⊆ 𝑀 → ( 𝐼 × 𝑁 ) ⊆ ( 𝑀 × 𝑁 ) ) | |
| 29 | 8 28 | syl | ⊢ ( 𝜑 → ( 𝐼 × 𝑁 ) ⊆ ( 𝑀 × 𝑁 ) ) |
| 30 | 27 29 | fssresd | ⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) : ( 𝐼 × 𝑁 ) ⟶ 𝐵 ) |
| 31 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 32 | 31 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 33 | xpfi | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝐼 × 𝑁 ) ∈ Fin ) | |
| 34 | 25 6 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 × 𝑁 ) ∈ Fin ) |
| 35 | 32 34 | elmapd | ⊢ ( 𝜑 → ( ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) ∈ ( 𝐵 ↑m ( 𝐼 × 𝑁 ) ) ↔ ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) : ( 𝐼 × 𝑁 ) ⟶ 𝐵 ) ) |
| 36 | 30 35 | mpbird | ⊢ ( 𝜑 → ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) ∈ ( 𝐵 ↑m ( 𝐼 × 𝑁 ) ) ) |
| 37 | 2 3 22 4 25 6 7 36 10 | mamuval | ⊢ ( 𝜑 → ( ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝐺 𝑌 ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝑃 ↦ ( 𝑅 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝑌 𝑗 ) ) ) ) ) ) |
| 38 | 21 24 37 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝑌 ) ↾ ( 𝐼 × 𝑃 ) ) = ( ( 𝑋 ↾ ( 𝐼 × 𝑁 ) ) 𝐺 𝑌 ) ) |