This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1modnnsub1 | ⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( 𝑀 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 3 | negmod | ⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( - 1 mod 𝑀 ) = ( ( 𝑀 − 1 ) mod 𝑀 ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( ( 𝑀 − 1 ) mod 𝑀 ) ) |
| 5 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 6 | peano2rem | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℝ ) |
| 8 | nnm1ge0 | ⊢ ( 𝑀 ∈ ℕ → 0 ≤ ( 𝑀 − 1 ) ) | |
| 9 | 5 | ltm1d | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) < 𝑀 ) |
| 10 | modid | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) < 𝑀 ) ) → ( ( 𝑀 − 1 ) mod 𝑀 ) = ( 𝑀 − 1 ) ) | |
| 11 | 7 2 8 9 10 | syl22anc | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) mod 𝑀 ) = ( 𝑀 − 1 ) ) |
| 12 | 4 11 | eqtrd | ⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( 𝑀 − 1 ) ) |