This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1modge3gt1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 < ( - 1 mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 2 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 3 | eluzle | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑀 ) | |
| 4 | 2 3 | eqbrtrid | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 2 + 1 ) ≤ 𝑀 ) |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | eluzelz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℤ ) | |
| 7 | zltp1le | ⊢ ( ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 2 < 𝑀 ↔ ( 2 + 1 ) ≤ 𝑀 ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 2 < 𝑀 ↔ ( 2 + 1 ) ≤ 𝑀 ) ) |
| 9 | 4 8 | mpbird | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 2 < 𝑀 ) |
| 10 | 1 9 | eqbrtrid | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 1 + 1 ) < 𝑀 ) |
| 11 | 1red | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℝ ) | |
| 12 | eluzelre | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℝ ) | |
| 13 | 11 11 12 | ltaddsub2d | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( ( 1 + 1 ) < 𝑀 ↔ 1 < ( 𝑀 − 1 ) ) ) |
| 14 | 10 13 | mpbid | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 < ( 𝑀 − 1 ) ) |
| 15 | eluz3nn | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℕ ) | |
| 16 | m1modnnsub1 | ⊢ ( 𝑀 ∈ ℕ → ( - 1 mod 𝑀 ) = ( 𝑀 − 1 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( - 1 mod 𝑀 ) = ( 𝑀 − 1 ) ) |
| 18 | 14 17 | breqtrrd | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 < ( - 1 mod 𝑀 ) ) |