This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lubprdm and lubpr . (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | ||
| lubpr.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubprlem | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑆 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 2 | lubpr.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 3 | lubpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | lubpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | lubpr.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 6 | lubpr.c | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 7 | lubpr.s | ⊢ ( 𝜑 → 𝑆 = { 𝑋 , 𝑌 } ) | |
| 8 | lubpr.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 9 | breq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ≤ 𝑌 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 10 | 9 3 6 | elrabd | ⊢ ( 𝜑 → 𝑋 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
| 11 | breq1 | ⊢ ( 𝑧 = 𝑌 → ( 𝑧 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌 ) ) | |
| 12 | 2 5 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 13 | 1 4 12 | syl2anc | ⊢ ( 𝜑 → 𝑌 ≤ 𝑌 ) |
| 14 | 11 4 13 | elrabd | ⊢ ( 𝜑 → 𝑌 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
| 15 | 10 14 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) |
| 16 | 2 5 8 1 4 | lublecl | ⊢ ( 𝜑 → { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ∈ dom 𝑈 ) |
| 17 | 2 5 8 1 4 | lubid | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) = 𝑌 ) |
| 18 | prid2g | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ { 𝑋 , 𝑌 } ) | |
| 19 | 4 18 | syl | ⊢ ( 𝜑 → 𝑌 ∈ { 𝑋 , 𝑌 } ) |
| 20 | 17 19 | eqeltrd | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ∈ { 𝑋 , 𝑌 } ) |
| 21 | 1 15 8 16 20 | lubsscl | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom 𝑈 ∧ ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom 𝑈 ) |
| 23 | 7 22 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) |
| 24 | 7 | fveq2d | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = ( 𝑈 ‘ { 𝑋 , 𝑌 } ) ) |
| 25 | 21 | simprd | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑋 , 𝑌 } ) = ( 𝑈 ‘ { 𝑧 ∈ 𝐵 ∣ 𝑧 ≤ 𝑌 } ) ) |
| 26 | 24 25 17 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) = 𝑌 ) |
| 27 | 23 26 | jca | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑆 ) = 𝑌 ) ) |