This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lubprdm and lubpr . (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubpr.k | |- ( ph -> K e. Poset ) |
|
| lubpr.b | |- B = ( Base ` K ) |
||
| lubpr.x | |- ( ph -> X e. B ) |
||
| lubpr.y | |- ( ph -> Y e. B ) |
||
| lubpr.l | |- .<_ = ( le ` K ) |
||
| lubpr.c | |- ( ph -> X .<_ Y ) |
||
| lubpr.s | |- ( ph -> S = { X , Y } ) |
||
| lubpr.u | |- U = ( lub ` K ) |
||
| Assertion | lubprlem | |- ( ph -> ( S e. dom U /\ ( U ` S ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubpr.k | |- ( ph -> K e. Poset ) |
|
| 2 | lubpr.b | |- B = ( Base ` K ) |
|
| 3 | lubpr.x | |- ( ph -> X e. B ) |
|
| 4 | lubpr.y | |- ( ph -> Y e. B ) |
|
| 5 | lubpr.l | |- .<_ = ( le ` K ) |
|
| 6 | lubpr.c | |- ( ph -> X .<_ Y ) |
|
| 7 | lubpr.s | |- ( ph -> S = { X , Y } ) |
|
| 8 | lubpr.u | |- U = ( lub ` K ) |
|
| 9 | breq1 | |- ( z = X -> ( z .<_ Y <-> X .<_ Y ) ) |
|
| 10 | 9 3 6 | elrabd | |- ( ph -> X e. { z e. B | z .<_ Y } ) |
| 11 | breq1 | |- ( z = Y -> ( z .<_ Y <-> Y .<_ Y ) ) |
|
| 12 | 2 5 | posref | |- ( ( K e. Poset /\ Y e. B ) -> Y .<_ Y ) |
| 13 | 1 4 12 | syl2anc | |- ( ph -> Y .<_ Y ) |
| 14 | 11 4 13 | elrabd | |- ( ph -> Y e. { z e. B | z .<_ Y } ) |
| 15 | 10 14 | prssd | |- ( ph -> { X , Y } C_ { z e. B | z .<_ Y } ) |
| 16 | 2 5 8 1 4 | lublecl | |- ( ph -> { z e. B | z .<_ Y } e. dom U ) |
| 17 | 2 5 8 1 4 | lubid | |- ( ph -> ( U ` { z e. B | z .<_ Y } ) = Y ) |
| 18 | prid2g | |- ( Y e. B -> Y e. { X , Y } ) |
|
| 19 | 4 18 | syl | |- ( ph -> Y e. { X , Y } ) |
| 20 | 17 19 | eqeltrd | |- ( ph -> ( U ` { z e. B | z .<_ Y } ) e. { X , Y } ) |
| 21 | 1 15 8 16 20 | lubsscl | |- ( ph -> ( { X , Y } e. dom U /\ ( U ` { X , Y } ) = ( U ` { z e. B | z .<_ Y } ) ) ) |
| 22 | 21 | simpld | |- ( ph -> { X , Y } e. dom U ) |
| 23 | 7 22 | eqeltrd | |- ( ph -> S e. dom U ) |
| 24 | 7 | fveq2d | |- ( ph -> ( U ` S ) = ( U ` { X , Y } ) ) |
| 25 | 21 | simprd | |- ( ph -> ( U ` { X , Y } ) = ( U ` { z e. B | z .<_ Y } ) ) |
| 26 | 24 25 17 | 3eqtrd | |- ( ph -> ( U ` S ) = Y ) |
| 27 | 23 26 | jca | |- ( ph -> ( S e. dom U /\ ( U ` S ) = Y ) ) |