This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublecl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublecl.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublecl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lublecl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| lublecl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | lublecl | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ∈ dom 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublecl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublecl.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublecl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lublecl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | lublecl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ssrab2 | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) |
| 8 | 1 2 3 4 5 | lublecllem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| 10 | reu6i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) | |
| 11 | 5 9 10 | syl2anc | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) |
| 12 | biid | ⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) | |
| 13 | 1 2 3 12 4 | lubeldm | ⊢ ( 𝜑 → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ∈ dom 𝑈 ↔ ( { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) ) ) |
| 14 | 7 11 13 | mpbir2and | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ∈ dom 𝑈 ) |