This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a subset of S contains the LUB of S , then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubsscl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| lubsscl.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| lubsscl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lubsscl.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | ||
| lubsscl.x | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) | ||
| Assertion | lubsscl | ⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubsscl.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 2 | lubsscl.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 3 | lubsscl.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lubsscl.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | |
| 5 | lubsscl.x | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 8 | 6 7 3 1 4 | lubelss | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
| 9 | 2 8 | sstrd | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐾 ) ) |
| 10 | 9 5 | sseldd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝐾 ∈ Poset ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑆 ∈ dom 𝑈 ) |
| 13 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑆 ) |
| 14 | 6 7 3 11 12 13 | luble | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) |
| 16 | breq1 | ⊢ ( 𝑦 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) | |
| 17 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) | |
| 18 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ∈ 𝑇 ) |
| 19 | 16 17 18 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) |
| 20 | 19 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) |
| 22 | breq2 | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) | |
| 23 | 22 | ralbidv | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ) ) |
| 24 | breq1 | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( 𝑥 ( le ‘ 𝐾 ) 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) | |
| 25 | 24 | imbi2d | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 26 | 25 | ralbidv | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 27 | 23 26 | anbi12d | ⊢ ( 𝑥 = ( 𝑈 ‘ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 28 | 27 | rspcev | ⊢ ( ( ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → ( 𝑈 ‘ 𝑆 ) ( le ‘ 𝐾 ) 𝑧 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 29 | 10 15 21 28 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 30 | biid | ⊢ ( ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) | |
| 31 | 6 7 3 30 1 | lubeldm2 | ⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ↔ ( 𝑇 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑇 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 32 | 9 29 31 | mpbir2and | ⊢ ( 𝜑 → 𝑇 ∈ dom 𝑈 ) |
| 33 | 7 6 3 1 9 10 14 19 | poslubd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) |
| 34 | 32 33 | jca | ⊢ ( 𝜑 → ( 𝑇 ∈ dom 𝑈 ∧ ( 𝑈 ‘ 𝑇 ) = ( 𝑈 ‘ 𝑆 ) ) ) |