This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psslinpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Q ) | |
| 2 | prub | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ Q ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 <Q 𝑥 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 <Q 𝑥 ) ) |
| 4 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 6 | 3 5 | syld | ⊢ ( ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
| 7 | 6 | exp43 | ⊢ ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) ) |
| 8 | 7 | com3r | ⊢ ( 𝐴 ∈ P → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) ) |
| 10 | 9 | imp4a | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 11 | 10 | com23 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
| 12 | 11 | alrimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
| 13 | 12 | exlimdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) ) |
| 14 | nss | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 15 | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 16 | 14 15 | xchnxbi | ⊢ ( ¬ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 17 | sspss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) | |
| 18 | df-ss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) | |
| 19 | 17 18 | bitr3i | ⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐴 ) ) |
| 20 | 13 16 19 | 3imtr4g | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ¬ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 21 | 20 | orrd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 22 | df-3or | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) | |
| 23 | or32 | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) | |
| 24 | orordir | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) | |
| 25 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 26 | 25 | orbi2i | ⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 27 | 26 | orbi2i | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
| 28 | 24 27 | bitr4i | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 29 | 22 23 28 | 3bitri | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 30 | 21 29 | sylibr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |